BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36790957)

  • 1. From picture to 3D hologram: end-to-end learning of real-time 3D photorealistic hologram generation from 2D image input.
    Chang C; Dai B; Zhu D; Li J; Xia J; Zhang D; Hou L; Zhuang S
    Opt Lett; 2023 Feb; 48(4):851-854. PubMed ID: 36790957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards real-time photorealistic 3D holography with deep neural networks.
    Shi L; Li B; Kim C; Kellnhofer P; Matusik W
    Nature; 2021 Mar; 591(7849):234-239. PubMed ID: 33692557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffraction model-informed neural network for unsupervised layer-based computer-generated holography.
    Shui X; Zheng H; Xia X; Yang F; Wang W; Yu Y
    Opt Express; 2022 Dec; 30(25):44814-44826. PubMed ID: 36522896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End-to-end learning of 3D phase-only holograms for holographic display.
    Shi L; Li B; Matusik W
    Light Sci Appl; 2022 Aug; 11(1):247. PubMed ID: 35922407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Holograms with 3D-CNN.
    Terbe D; Orzó L; Zarándy Á
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network.
    Wang D; Li ZS; Zheng Y; Zhao YR; Liu C; Xu JB; Zheng YW; Huang Q; Chang CL; Zhang DW; Zhuang SL; Wang QH
    Light Sci Appl; 2024 Feb; 13(1):62. PubMed ID: 38424072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-to-end real-time holographic display based on real-time capture of real scenes.
    Zhang S; Ma H; Yang Y; Zhao W; Liu J
    Opt Lett; 2023 Apr; 48(7):1850-1853. PubMed ID: 37221782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive deep learning model for 3D color holography.
    Yolalmaz A; Yüce E
    Sci Rep; 2022 Feb; 12(1):2487. PubMed ID: 35169161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Holographic augmented reality based on three-dimensional volumetric imaging for a photorealistic scene.
    Kim KJ; Park BS; Kim JK; Kim DW; Seo YH
    Opt Express; 2020 Nov; 28(24):35972-35985. PubMed ID: 33379702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffraction-engineered holography: Beyond the depth representation limit of holographic displays.
    Yang D; Seo W; Yu H; Kim SI; Shin B; Lee CK; Moon S; An J; Hong JY; Sung G; Lee HS
    Nat Commun; 2022 Oct; 13(1):6012. PubMed ID: 36224198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-learning-based computer-generated hologram from a stereo image pair.
    Chang C; Wang D; Zhu D; Li J; Xia J; Zhang X
    Opt Lett; 2022 Mar; 47(6):1482-1485. PubMed ID: 35290344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UPST-NeRF: Universal Photorealistic Style Transfer of Neural Radiance Fields for 3D Scene.
    Chen Y; Yuan Q; Li Z; Liu Y; Wang W; Xie C; Wen X; Yu Q
    IEEE Trans Vis Comput Graph; 2024 Mar; PP():. PubMed ID: 38502619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional computer holography enabled from a single 2D image.
    Chang C; Zhu D; Li J; Wang D; Xia J; Zhang X
    Opt Lett; 2022 May; 47(9):2202-2205. PubMed ID: 35486760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system.
    Yu H; Kim Y; Yang D; Seo W; Kim Y; Hong JY; Song H; Sung G; Sung Y; Min SW; Lee HS
    Nat Commun; 2023 Jun; 14(1):3534. PubMed ID: 37316495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning denoising diffusion probabilistic model applied to holographic data synthesis.
    Velez-Zea A; Gutierrez-Cespedes CD; Barrera-Ramírez JF
    Opt Lett; 2024 Feb; 49(3):514-517. PubMed ID: 38300047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-generated real-time digital holography: first time use in clinical medical imaging.
    Bruckheimer E; Rotschild C; Dagan T; Amir G; Kaufman A; Gelman S; Birk E
    Eur Heart J Cardiovasc Imaging; 2016 Aug; 17(8):845-9. PubMed ID: 27283456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic reconstruction enhancement via unpaired image-to-image translation.
    Scherrer R; Quiniou T; Jauffrais T; Lemonnier H; Bonnet S; Selmaoui-Folcher N
    Appl Opt; 2022 Nov; 61(33):9807-9816. PubMed ID: 36606810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Color multilayer holographic near-eye augmented reality display.
    Velez-Zea A; Barrera-Ramírez JF
    Sci Rep; 2023 Jun; 13(1):10651. PubMed ID: 37391489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speeding up reconstruction of 3D tomograms in holographic flow cytometry
    Pirone D; Sirico D; Miccio L; Bianco V; Mugnano M; Ferraro P; Memmolo P
    Lab Chip; 2022 Feb; 22(4):793-804. PubMed ID: 35076055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram.
    Wu Y; Luo Y; Chaudhari G; Rivenson Y; Calis A; de Haan K; Ozcan A
    Light Sci Appl; 2019; 8():25. PubMed ID: 30854197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.