These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36790960)

  • 1. Determination of the linewidth enhancement factor of semiconductor lasers by complete optical field reconstruction.
    Sinquin B; Romanelli M
    Opt Lett; 2023 Feb; 48(4):863-866. PubMed ID: 36790960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the linewidth enhancement factor on the microwave linewidth of the period-one oscillations of optically injected semiconductor lasers.
    AlMulla M; Liu JM
    Opt Lett; 2022 Mar; 47(5):1166-1169. PubMed ID: 35230318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple method for measuring the linewidth enhancement factor of semiconductor lasers.
    Fan Y; Yu Y; Xi J; Rajan G; Guo Q; Tong J
    Appl Opt; 2015 Dec; 54(34):10295-8. PubMed ID: 26836691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linewidth characteristics of period-one dynamics induced by optically injected semiconductor lasers.
    AlMulla M; Liu JM
    Opt Express; 2020 May; 28(10):14677-14693. PubMed ID: 32403504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-modulated, tunable, semiconductor-optical-amplifier-based fiber ring laser for linewidth and line shape control.
    Girard SL; Chen H; Schinn GW; Piché M
    Opt Lett; 2008 Aug; 33(16):1920-2. PubMed ID: 18709133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum control of phase fluctuations in semiconductor lasers.
    Santis CT; Vilenchik Y; Satyan N; Rakuljic G; Yariv A
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):E7896-E7904. PubMed ID: 30087187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Narrow-linewidth single-frequency photonic microwave generation in optically injected semiconductor lasers with filtered optical feedback.
    Xue C; Ji S; Wang A; Jiang N; Qiu K; Hong Y
    Opt Lett; 2018 Sep; 43(17):4184-4187. PubMed ID: 30160747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulations on narrow-linewidth photonic microwave generation based on a QD laser simultaneously subject to optical injection and optical feedback.
    Jiang Z; Wu Z; Yang W; Hu C; Lin X; Jin Y; Dai M; Cui B; Yue D; Xia G
    Appl Opt; 2020 Mar; 59(9):2935-2941. PubMed ID: 32225845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple method for measuring the linewidth enhancement factor of semiconductor lasers by optical injection locking.
    Iiyama K; Hayashi K; Ida Y
    Opt Lett; 1992 Aug; 17(16):1128-30. PubMed ID: 19794740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking.
    Wang C; Schires K; Osiński M; Poole PJ; Grillot F
    Sci Rep; 2016 Jun; 6():27825. PubMed ID: 27302301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the linewidth enhancement factor via optical feedback in quantum dot micropillar lasers.
    Holzinger S; Kreinberg S; Hokr BH; Schneider C; Höfling S; Chow WW; Porte X; Reitzenstein S
    Opt Express; 2018 Nov; 26(24):31363-31371. PubMed ID: 30650723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-optic locking of a semiconductor laser to a microcavity resonance.
    McRae TG; Lee KH; McGovern M; Gwyther D; Bowen WP
    Opt Express; 2009 Nov; 17(24):21977-85. PubMed ID: 19997442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation method for the optical feedback factor and linewidth enhancement factor using phase discontinuities in self-mixing interferometry signals.
    Ri CY; Kim CS; Ri GC; Kang JC; Pak CM; O JM
    Appl Opt; 2020 Jan; 59(3):687-693. PubMed ID: 32225204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of a flexible and stable semiconductor laser linewidth emulator.
    Zan Z; Lowery AJ
    Opt Express; 2010 Jun; 18(13):13880-5. PubMed ID: 20588521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of linewidth enhancement factor on the generation of optical vortices in a class-A degenerate cavity semiconductor laser.
    Bouchereau Y; Karuseichyk S; Guitter R; Pal V; Bretenaker F
    Opt Express; 2022 Apr; 30(9):15648-15658. PubMed ID: 35473280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers.
    Kim J; Delfyett PJ
    Opt Express; 2009 Dec; 17(25):22566-70. PubMed ID: 20052181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-validating technique for the measurement of the linewidth enhancement factor in semiconductor lasers.
    Consoli A; Bonilla B; Tijero JM; Esquivias I
    Opt Express; 2012 Feb; 20(5):4979-87. PubMed ID: 22418302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing optically injected semiconductor lasers for periodic dynamics with reduced sensitivity to perturbations.
    AlMulla M
    Opt Express; 2019 Jun; 27(12):17283-17297. PubMed ID: 31252941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linewidth enhancement factor in semiconductor lasers subject to various external optical feedback conditions.
    Chuang CF; Liao YH; Lin CH; Chen SY; Grillot F; Lin FY
    Opt Express; 2014 Mar; 22(5):5651-8. PubMed ID: 24663906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency comb dynamics of a 1.3  μm hybrid-silicon quantum dot semiconductor laser with optical injection.
    Dong B; Huang H; Duan J; Kurczveil G; Liang D; Beausoleil RG; Grillot F
    Opt Lett; 2019 Dec; 44(23):5755-5758. PubMed ID: 31774771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.