These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36790973)

  • 21. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication.
    Yan X; Guo L; Cheng M; Li J
    Opt Express; 2018 May; 26(10):12605-12619. PubMed ID: 29801299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-frame rapid autofocusing for brightfield and fluorescence whole slide imaging.
    Liao J; Bian L; Bian Z; Zhang Z; Patel C; Hoshino K; Eldar YC; Zheng G
    Biomed Opt Express; 2016 Nov; 7(11):4763-4768. PubMed ID: 27896014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autofocusing Airy beams generated by all-dielectric metasurface for visible light.
    Fan Q; Wang D; Huo P; Zhang Z; Liang Y; Xu T
    Opt Express; 2017 Apr; 25(8):9285-9294. PubMed ID: 28438004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid-crystal splitter for generating and separating autofocusing and autodefocusing circular Airy beams.
    Wei B; Zhang Y; Li P; Liu S; Hu W; Lu Y; Wu Y; Dou X; Zhao J
    Opt Express; 2020 Aug; 28(18):26151-26160. PubMed ID: 32906891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compact devices for generating multi-focus autofocusing optical beams in free space.
    Liu Z; Chen Y; Lin S; Wen Y
    Opt Lett; 2021 Aug; 46(15):3524-3527. PubMed ID: 34329215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Airy Gaussian vortex beam array on reducing intermode crosstalk induced by atmospheric turbulence.
    Yue P; Hu J; Yi X; Xu D; Liu Y
    Opt Express; 2019 Dec; 27(26):37986-37998. PubMed ID: 31878570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multifocus autofocusing Airy beam.
    Li T; Zi F; Huang K; Lu X
    J Opt Soc Am A Opt Image Sci Vis; 2017 Sep; 34(9):1530-1534. PubMed ID: 29036156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acceleration of autofocusing with improved edge extraction using structure tensor and Schatten norm.
    Ren Z; Lam EY; Zhao J
    Opt Express; 2020 May; 28(10):14712-14728. PubMed ID: 32403507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tightly autofocusing beams along the spherical surface.
    Guo Z; Liu S; Li P; Wei B; Zhao J
    Opt Express; 2022 Jul; 30(15):26192-26200. PubMed ID: 36236814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles.
    Jiang Y; Zhao S; Yu W; Zhu X
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):890-894. PubMed ID: 29877331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Realization of double uniform line self-focusing of elliptical Airyprime beams.
    He J; Chen J; Zhou Y; Wang F; Cai Y; Zhou G
    Opt Express; 2024 Apr; 32(8):14116-14132. PubMed ID: 38859366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of Complex Transverse Energy Flow Distributions with Autofocusing Optical Vortex Beams.
    Khonina SN; Porfirev AP; Ustinov AV; Butt MA
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of the modulated vortex and second-order chirp on the propagation dynamics of ring Pearcey Gaussian beams.
    Zhang L; Deng D; Yang X; Wang G; Liu H
    Opt Lett; 2019 Oct; 44(19):4654-4657. PubMed ID: 31568409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shaping autofocusing Airy beams through the modification of Fourier spectrum.
    Xu D; Liu Y; Mo Z; Jiang J; Shi J; Liang Z; Wu Y; Zhao J; Yang H; Huang H; Liu H; Shui L; Deng D
    Opt Express; 2022 Jan; 30(1):232-242. PubMed ID: 35201202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Propagation characteristics of partially coherent circular Airy beams.
    Jiang Y; Yu W; Zhu X; Jiang P
    Opt Express; 2018 Sep; 26(18):23084-23092. PubMed ID: 30184964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulating spin-dependent splitting of vector abruptly autofocusing beam by encoding cosine-azimuthal variant phases.
    Zhang Y; Li P; Liu S; Han L; Cheng H; Zhao J
    Opt Express; 2016 Dec; 24(25):28409-28418. PubMed ID: 27958551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abruptly autofocusing property of blocked circular Airy beams.
    Li N; Jiang Y; Huang K; Lu X
    Opt Express; 2014 Sep; 22(19):22847-53. PubMed ID: 25321755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast autofocusing based on single-pixel moment detection.
    Chen H; Shi D; Guo Z; Jiang R; Zha L; Wang Y; Flusser J
    Commun Eng; 2024 Oct; 3(1):140. PubMed ID: 39384858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autofocusing algorithm of interferogram based on object image and registration technology.
    Yang P; Fang S; Zhu X; Komori M; Kubo A
    Appl Opt; 2013 Dec; 52(36):8723-31. PubMed ID: 24513937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pre-engineered abruptly autofocusing beams.
    Chremmos I; Efremidis NK; Christodoulides DN
    Opt Lett; 2011 May; 36(10):1890-2. PubMed ID: 21593925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.