These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36791036)

  • 1. Molecular Origin of Wetting Characteristics on Mineral Surfaces.
    A H; Yang Z; Hu R; Chen YF
    Langmuir; 2023 Feb; 39(8):2932-2942. PubMed ID: 36791036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale.
    Dong Z; Xue H; Li B; Tian S; Lu S; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of wetting and spreading by aqueous surfactant solutions.
    Lee KS; Ivanova N; Starov VM; Hilal N; Dutschk V
    Adv Colloid Interface Sci; 2008 Dec; 144(1-2):54-65. PubMed ID: 18834966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of the wetting behaviors on a rutile TiO
    Fatemi SM; Fatemi SJ
    J Mol Graph Model; 2022 May; 112():108123. PubMed ID: 35074708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic simulations of wetting properties and water films on hydrophilic surfaces.
    Kanduč M; Netz RR
    J Chem Phys; 2017 Apr; 146(16):164705. PubMed ID: 28456191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling CO
    Liang Y; Tsuji S; Jia J; Tsuji T; Matsuoka T
    Acc Chem Res; 2017 Jul; 50(7):1530-1540. PubMed ID: 28661135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytic model for the electrowetting properties of oil-water-solid systems.
    Cavalli A; Bera B; van den Ende D; Mugele F
    Phys Rev E; 2016 Apr; 93():042606. PubMed ID: 27176351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 adhesion on hydrated mineral surfaces.
    Wang S; Tao Z; Persily SM; Clarens AF
    Environ Sci Technol; 2013 Oct; 47(20):11858-65. PubMed ID: 24040744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Liquid Film in Heterogeneous Condensation of Water Vapor: Effects of Solid-Fluid Interaction and Sulfuric Acid Component.
    Lyu S; Tang Z; Song Q; Yang Z; Duan Y
    Langmuir; 2022 Jun; 38(22):7085-7097. PubMed ID: 35617688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the hydrophobic and hydrophilic characteristics of sliding and slider surfaces on friction coefficient: in vivo human skin friction comparison.
    Elkhyat A; Courderot-Masuyer C; Gharbi T; Humbert P
    Skin Res Technol; 2004 Nov; 10(4):215-21. PubMed ID: 15536654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting failure of hydrophilic surfaces promoted by surface roughness.
    Zhao MH; Chen XP; Wang Q
    Sci Rep; 2014 Jun; 4():5376. PubMed ID: 24948390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of additives found in industrial formulations of TCE on the wettability of sandstone.
    Harrold G; Lerner DN; Leharne SA
    J Contam Hydrol; 2005 Nov; 80(1-2):1-17. PubMed ID: 16099534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Liquid-Solid and Vapor-Liquid-Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy.
    Flynn Bolte KT; Balaraman RP; Jiao K; Tustison M; Kirkwood KS; Zhou C; Kohli P
    Langmuir; 2018 Mar; 34(12):3720-3730. PubMed ID: 29486565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The wetting behavior of three different types of aqueous surfactant solutions on housefly (Musca domestica) surfaces.
    Wan Q; Zhao J; Li H; Li H; Wang C; Pan B
    Pest Manag Sci; 2020 Mar; 76(3):1085-1093. PubMed ID: 31525272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet leaping governs microstructured surface wetting.
    Yada S; Bagheri S; Hansson J; Do-Quang M; Lundell F; van der Wijngaart W; Amberg G
    Soft Matter; 2019 Dec; 15(46):9528-9536. PubMed ID: 31720679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.