BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36791048)

  • 1. Structural and Biochemical Insights into Post-Translational Arginine-to-Ornithine Peptide Modifications by an Atypical Arginase.
    Mordhorst S; Badmann T; Bösch NM; Morinaka BI; Rauch H; Piel J; Groll M; Vagstad AL
    ACS Chem Biol; 2023 Mar; 18(3):528-536. PubMed ID: 36791048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttranslationally Acting Arginases Provide a Ribosomal Route to Non-proteinogenic Ornithine Residues in Diverse Peptide Sequences.
    Mordhorst S; Morinaka BI; Vagstad AL; Piel J
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21442-21447. PubMed ID: 32780902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of an arginase-like protein from Trypanosoma brucei that evolved without a binuclear manganese cluster.
    Hai Y; Kerkhoven EJ; Barrett MP; Christianson DW
    Biochemistry; 2015 Jan; 54(2):458-71. PubMed ID: 25536859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical studies on Helicobacter pylori arginase: insight into the difference in activity compared to other arginases.
    Srivastava A; Sau AK
    IUBMB Life; 2010 Dec; 62(12):906-15. PubMed ID: 21190293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily.
    Bewley MC; Jeffrey PD; Patchett ML; Kanyo ZF; Baker EN
    Structure; 1999 Apr; 7(4):435-48. PubMed ID: 10196128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Neighboring Subunit Is Engaged to Stabilize the Substrate in the Active Site of Plant Arginases.
    Sekula B
    Front Plant Sci; 2020; 11():987. PubMed ID: 32754173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Insights into the Determinants of Specificity in Human Type I Arginase: Generation of a Mutant That Is Only Active with Agmatine as Substrate.
    Orellana MS; Jaña GA; Figueroa M; Martínez-Oyanedel J; Medina FE; Tarifeño-Saldivia E; Gatica M; García-Robles MÁ; Carvajal N; Uribe E
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence Divergence in the Arginase Domain of Ornithine Decarboxylase/Arginase in
    Mothersole RG; Kolesnikov M; Chan ACK; Oduro E; Murphy MEP; Wolthers KR
    Biochemistry; 2022 Jul; 61(13):1378-1391. PubMed ID: 35732022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of trypanosomatid's arginase in polyamine biosynthesis and pathogenesis.
    Balaña-Fouce R; Calvo-Álvarez E; Álvarez-Velilla R; Prada CF; Pérez-Pertejo Y; Reguera RM
    Mol Biochem Parasitol; 2012 Feb; 181(2):85-93. PubMed ID: 22033378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into Entamoeba histolytica arginase and structure-based identification of novel non-amino acid based inhibitors as potential antiamoebic molecules.
    Malik A; Dalal V; Ankri S; Tomar S
    FEBS J; 2019 Oct; 286(20):4135-4155. PubMed ID: 31199070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of arginases.
    Ash DE
    J Nutr; 2004 Oct; 134(10 Suppl):2760S-2764S; discussion 2765S-2767S. PubMed ID: 15465781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of mammalian arginase activity.
    Kepka-Lenhart D; Ash DE; Morris SM
    Methods Enzymol; 2008; 440():221-30. PubMed ID: 18423220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a unique binuclear manganese cluster in arginase.
    Kanyo ZF; Scolnick LR; Ash DE; Christianson DW
    Nature; 1996 Oct; 383(6600):554-7. PubMed ID: 8849731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity, properties and functions of bacterial arginases.
    Hernández VM; Arteaga A; Dunn MF
    FEMS Microbiol Rev; 2021 Nov; 45(6):. PubMed ID: 34160574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression, purification, and characterization of human type II arginase.
    Colleluori DM; Morris SM; Ash DE
    Arch Biochem Biophys; 2001 May; 389(1):135-43. PubMed ID: 11370664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic and metabolic inferences from the binding of substrate analogues and products to arginase.
    Cox JD; Cama E; Colleluori DM; Pethe S; Boucher JL; Mansuy D; Ash DE; Christianson DW
    Biochemistry; 2001 Mar; 40(9):2689-701. PubMed ID: 11258880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges.
    Li M; Qin J; Xiong K; Jiang B; Zhang T
    Crit Rev Biotechnol; 2022 Aug; 42(5):651-667. PubMed ID: 34612104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic regulation, biochemical properties and physiological importance of arginase from
    Ide AA; Hernández VM; Medina-Aparicio L; Carcamo-Noriega E; Girard L; Hernández-Lucas I; Dunn MF
    Microbiology (Reading); 2020 May; 166(5):484-497. PubMed ID: 32216867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landornamides: Antiviral Ornithine-Containing Ribosomal Peptides Discovered through Genome Mining.
    Bösch NM; Borsa M; Greczmiel U; Morinaka BI; Gugger M; Oxenius A; Vagstad AL; Piel J
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11763-11768. PubMed ID: 32163654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS.
    Elms S; Chen F; Wang Y; Qian J; Askari B; Yu Y; Pandey D; Iddings J; Caldwell RB; Fulton DJ
    Am J Physiol Heart Circ Physiol; 2013 Sep; 305(5):H651-66. PubMed ID: 23792682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.