BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36791234)

  • 1. Alternative Fast and Slow Primary Charge-Separation Pathways in Photosystem II.
    Capone M; Sirohiwal A; Aschi M; Pantazis DA; Daidone I
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202216276. PubMed ID: 36791234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction Center Excitation in Photosystem II: From Multiscale Modeling to Functional Principles.
    Sirohiwal A; Pantazis DA
    Acc Chem Res; 2023 Nov; 56(21):2921-2932. PubMed ID: 37844298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond visible transient absorption spectroscopy of chlorophyll-
    Zamzam N; Rakowski R; Kaucikas M; Dorlhiac G; Viola S; Nürnberg DJ; Fantuzzi A; Rutherford AW; van Thor JJ
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23158-23164. PubMed ID: 32868421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and evolution of light harvesting in photosynthesis: the role of antenna chlorophyll conserved between photosystem II and photosystem I.
    Vasil'ev S; Bruce D
    Plant Cell; 2004 Nov; 16(11):3059-68. PubMed ID: 15486105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From antenna to reaction center: Pathways of ultrafast energy and charge transfer in photosystem II.
    Yang SJ; Arsenault EA; Orcutt K; Iwai M; Yoneda Y; Fleming GR
    Proc Natl Acad Sci U S A; 2022 Oct; 119(42):e2208033119. PubMed ID: 36215463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption.
    Novoderezhkin VI; Andrizhiyevskaya EG; Dekker JP; van Grondelle R
    Biophys J; 2005 Sep; 89(3):1464-81. PubMed ID: 15980183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of energy limitations on function and resilience in long-wavelength Photosystem II.
    Viola S; Roseby W; Santabarbara S; Nürnberg D; Assunção R; Dau H; Sellés J; Boussac A; Fantuzzi A; Rutherford AW
    Elife; 2022 Jul; 11():. PubMed ID: 35852834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complex.
    Vinyard DJ; Sun JS; Gimpel J; Ananyev GM; Mayfield SP; Charles Dismukes G
    Photosynth Res; 2016 May; 128(2):141-50. PubMed ID: 26687161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Matrix Control of Reaction Center Excitation in Photosystem II.
    Sirohiwal A; Neese F; Pantazis DA
    J Am Chem Soc; 2020 Oct; 142(42):18174-18190. PubMed ID: 33034453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of light-harvesting in the photosystem II core complex.
    Müh F; Zouni A
    Protein Sci; 2020 May; 29(5):1090-1119. PubMed ID: 32067287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of molecular flexibility on the site energy shift of chlorophylls in Photosystem II.
    Narzi D; Coccia E; Manzoli M; Guidoni L
    Biophys Chem; 2017 Oct; 229():93-98. PubMed ID: 28711348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Electronic Origin of Far-Red-Light-Driven Oxygenic Photosynthesis.
    Sirohiwal A; Pantazis DA
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202200356. PubMed ID: 35142017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast excitation quenching by the oxidized photosystem II reaction center.
    Akhtar P; Sipka G; Han W; Li X; Han G; Shen JR; Garab G; Tan HS; Lambrev PH
    J Chem Phys; 2022 Apr; 156(14):145101. PubMed ID: 35428385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorophyll excitation energies and structural stability of the CP47 antenna of photosystem II: a case study in the first-principles simulation of light-harvesting complexes.
    Sirohiwal A; Neese F; Pantazis DA
    Chem Sci; 2021 Feb; 12(12):4463-4476. PubMed ID: 34163712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary light-energy conversion in tetrameric chlorophyll structure of photosystem II and bacterial reaction centers: II. Femto- and picosecond charge separation in PSII D1/D2/Cyt b559 complex.
    Shelaev IV; Gostev FE; Nadtochenko VA; Shkuropatov AY; Zabelin AA; Mamedov MD; Semenov AY; Sarkisov OM; Shuvalov VA
    Photosynth Res; 2008; 98(1-3):95-103. PubMed ID: 18855113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Far-red photosynthesis: Two charge separation pathways exist in plant Photosystem II reaction center.
    Pavlou A; Mokvist F; Styring S; Mamedov F
    Biochim Biophys Acta Bioenerg; 2023 Nov; 1864(4):148994. PubMed ID: 37355002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A TDDFT investigation of the Photosystem II reaction center: Insights into the precursors to charge separation.
    Kavanagh MA; Karlsson JKG; Colburn JD; Barter LMC; Gould IR
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19705-19712. PubMed ID: 32747579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the question of the light-harvesting role of β-carotene in photosystem II and photosystem I core complexes.
    Stamatakis K; Tsimilli-Michael M; Papageorgiou GC
    Plant Physiol Biochem; 2014 Aug; 81():121-7. PubMed ID: 24529497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P680 (P(D1)P(D2)) and Chl(D1) as alternative electron donors in photosystem II core complexes and isolated reaction centers.
    Shelaev IV; Gostev FE; Vishnev MI; Shkuropatov AY; Ptushenko VV; Mamedov MD; Sarkisov OM; Nadtochenko VA; Semenov AY; Shuvalov VA
    J Photochem Photobiol B; 2011; 104(1-2):44-50. PubMed ID: 21377375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf.
    Wientjes E; Philippi J; Borst JW; van Amerongen H
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):259-265. PubMed ID: 28095301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.