These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36791388)

  • 1. Investigation of Sequence-Penetration Relationships of Antisense Oligonucleotides.
    Batistatou N; Kritzer JA
    Chembiochem; 2023 May; 24(9):e202300009. PubMed ID: 36791388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Measurement of Cytosolic and Nuclear Penetration of Oligonucleotide Therapeutics.
    Deprey K; Batistatou N; Debets MF; Godfrey J; VanderWall KB; Miles RR; Shehaj L; Guo J; Andreucci A; Kandasamy P; Lu G; Shimizu M; Vargeese C; Kritzer JA
    ACS Chem Biol; 2022 Feb; 17(2):348-360. PubMed ID: 35034446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative measurement of cytosolic penetration using the chloroalkane penetration assay.
    Deprey K; Kritzer JA
    Methods Enzymol; 2020; 641():277-309. PubMed ID: 32713526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hairpin antisense oligonucleotides containing 2'-methoxynucleosides with base-pairing in the stem region at the 3'-end: penetration, localization, and Anti-HIV activity.
    Kuwasaki T; Hosono K; Takai K; Ushijima K; Nakashima H; Saito T; Yamamoto N; Takaku H
    Biochem Biophys Res Commun; 1996 Nov; 228(2):623-31. PubMed ID: 8920960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel Screening Using the Chloroalkane Penetration Assay Reveals Structure-Penetration Relationships.
    Mientkiewicz KM; Peraro L; Kritzer JA
    ACS Chem Biol; 2021 Jul; 16(7):1184-1190. PubMed ID: 34224243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-Dihydroxyboryluridine enhances cytosolic penetration of antisense oligonucleotides.
    Kavoosi S; Deprey K; Kritzer JA; Islam K
    Chem Commun (Camb); 2023 Jul; 59(56):8692-8695. PubMed ID: 37345964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting optimal oligonucleotide composition for maximal antisense effect following streptolysin O-mediated delivery into human leukaemia cells.
    Giles RV; Spiller DG; Grzybowski J; Clark RE; Nicklin P; Tidd DM
    Nucleic Acids Res; 1998 Apr; 26(7):1567-75. PubMed ID: 9512525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides.
    Agrawal S
    Biochim Biophys Acta; 1999 Dec; 1489(1):53-68. PubMed ID: 10806997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake.
    Schmajuk G; Sierakowska H; Kole R
    J Biol Chem; 1999 Jul; 274(31):21783-9. PubMed ID: 10419493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bias in nucleotide composition of antisense oligonucleotides.
    Smetsers TF; Boezeman JB; Mensink EJ
    Antisense Nucleic Acid Drug Dev; 1996; 6(1):63-7. PubMed ID: 8783797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease.
    Sardone V; Zhou H; Muntoni F; Ferlini A; Falzarano MS
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28379182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using RNA-seq to Assess Off-Target Effects of Antisense Oligonucleotides in Human Cell Lines.
    Michel S; Schirduan K; Shen Y; Klar R; Tost J; Jaschinski F
    Mol Diagn Ther; 2021 Jan; 25(1):77-85. PubMed ID: 33314011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medicinal chemistry of antisense oligonucleotides--future opportunities.
    Cook PD
    Anticancer Drug Des; 1991 Dec; 6(6):585-607. PubMed ID: 1772571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense oligonucleotides as therapeutics for malignant diseases.
    Ho PT; Parkinson DR
    Semin Oncol; 1997 Apr; 24(2):187-202. PubMed ID: 9129689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced antisense efficacy of oligonucleotides adsorbed to monomethylaminoethylmethacrylate methylmethacrylate copolymer nanoparticles.
    Zobel HP; Junghans M; Maienschein V; Werner D; Gilbert M; Zimmermann H; Noe C; Kreuter J; Zimmer A
    Eur J Pharm Biopharm; 2000 May; 49(3):203-10. PubMed ID: 10799810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Challenges in Delivery and Cytosolic Translocation of Therapeutic RNAs.
    Johannes L; Lucchino M
    Nucleic Acid Ther; 2018 Jun; 28(3):178-193. PubMed ID: 29883296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence dependency of the internalization and distribution of phosphorothioate oligonucleotides in vascular smooth muscle cells.
    Etore F; Tenu JP; Teiger E; Adnot S; Lonchampt MO; Pirotzki E; Le Doan T
    Biochem Pharmacol; 1998 May; 55(9):1465-73. PubMed ID: 10076539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural modifications of antisense oligonucleotides.
    Urban E; Noe CR
    Farmaco; 2003 Mar; 58(3):243-58. PubMed ID: 12620420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides.
    Hussain M; Shchepinov M; Sohail M; Benter IF; Hollins AJ; Southern EM; Akhtar S
    J Control Release; 2004 Sep; 99(1):139-55. PubMed ID: 15342187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disulfide-Unit Conjugation Enables Ultrafast Cytosolic Internalization of Antisense DNA and siRNA.
    Shu Z; Tanaka I; Ota A; Fushihara D; Abe N; Kawaguchi S; Nakamoto K; Tomoike F; Tada S; Ito Y; Kimura Y; Abe H
    Angew Chem Int Ed Engl; 2019 May; 58(20):6611-6615. PubMed ID: 30884043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.