BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 36791462)

  • 1. A multi-task and multi-channel convolutional neural network for semi-supervised neonatal artefact detection.
    Hermans T; Smets L; Lemmens K; Dereymaeker A; Jansen K; Naulaers G; Zappasodi F; Van Huffel S; Comani S; De Vos M
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36791462
    [No Abstract]   [Full Text] [Related]  

  • 2. Automated detection of artefacts in neonatal EEG with residual neural networks.
    Webb L; Kauppila M; Roberts JA; Vanhatalo S; Stevenson NJ
    Comput Methods Programs Biomed; 2021 Sep; 208():106194. PubMed ID: 34118491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic seizure detection using three-dimensional CNN based on multi-channel EEG.
    Wei X; Zhou L; Chen Z; Zhang L; Zhou Y
    BMC Med Inform Decis Mak; 2018 Dec; 18(Suppl 5):111. PubMed ID: 30526571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning image features with fewer labels using a semi-supervised deep convolutional network.
    Dos Santos FP; Zor C; Kittler J; Ponti MA
    Neural Netw; 2020 Dec; 132():131-143. PubMed ID: 32871338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Unsupervised Method for Artefact Removal in EEG Signals.
    Mur A; Dormido R; Duro N
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Supervised EEG Emotion Recognition Models Based on CNN.
    Wang X; Ma Y; Cammon J; Fang F; Gao Y; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1952-1962. PubMed ID: 37015115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals.
    Maheshwari D; Ghosh SK; Tripathy RK; Sharma M; Acharya UR
    Comput Biol Med; 2021 Jul; 134():104428. PubMed ID: 33984749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An extended clinical EEG dataset with 15,300 automatically labelled recordings for pathology decoding.
    Kiessner AK; Schirrmeister RT; Gemein LAW; Boedecker J; Ball T
    Neuroimage Clin; 2023; 39():103482. PubMed ID: 37544168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Vote Veto: Semi-Supervised Learning for Low-Shot Glaucoma Diagnosis.
    Fan R; Bowd C; Brye N; Christopher M; Weinreb RN; Kriegman DJ; Zangwill LM
    IEEE Trans Med Imaging; 2023 Dec; 42(12):3764-3778. PubMed ID: 37610903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.
    Otálora S; Marini N; Müller H; Atzori M
    BMC Med Imaging; 2021 May; 21(1):77. PubMed ID: 33964886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Weakly Supervised Learning Method for Cell Detection and Tracking Using Incomplete Initial Annotations.
    Wu H; Niyogisubizo J; Zhao K; Meng J; Xi W; Li H; Pan Y; Wei Y
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering the structure of clinical EEG signals with self-supervised learning.
    Banville H; Chehab O; Hyvärinen A; Engemann DA; Gramfort A
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33181507
    [No Abstract]   [Full Text] [Related]  

  • 15. Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks.
    Chen J; Li Y; Luna LP; Chung HW; Rowe SP; Du Y; Solnes LB; Frey EC
    Med Phys; 2021 Jul; 48(7):3860-3877. PubMed ID: 33905560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of Semi-Supervised Active Learning in Automated Wound Image Segmentation.
    Curti N; Merli Y; Zengarini C; Giampieri E; Merlotti A; Dall'Olio D; Marcelli E; Bianchi T; Castellani G
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging.
    Wolf D; Payer T; Lisson CS; Lisson CG; Beer M; Götz M; Ropinski T
    Sci Rep; 2023 Nov; 13(1):20260. PubMed ID: 37985685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neonatal Seizure Detection Using Deep Convolutional Neural Networks.
    Ansari AH; Cherian PJ; Caicedo A; Naulaers G; De Vos M; Van Huffel S
    Int J Neural Syst; 2019 May; 29(4):1850011. PubMed ID: 29747532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
    Shi Z; Wang N; Kong F; Cao H; Cao Q
    Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.