These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 36791550)
1. LDANet: Automatic lung parenchyma segmentation from CT images. Chen Y; Feng L; Zheng C; Zhou T; Liu L; Liu P; Chen Y Comput Biol Med; 2023 Mar; 155():106659. PubMed ID: 36791550 [TBL] [Abstract][Full Text] [Related]
2. [Lung parenchyma segmentation based on double scale parallel attention network]. Feng K; Ren L; Wu Y; Li Y; Wang H; Wang G Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Aug; 39(4):721-729. PubMed ID: 36008336 [TBL] [Abstract][Full Text] [Related]
3. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images. Kushnure DT; Talbar SN Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959 [TBL] [Abstract][Full Text] [Related]
4. MCAFNet: multiscale cross-layer attention fusion network for honeycomb lung lesion segmentation. Li G; Xie J; Zhang L; Sun M; Li Z; Sun Y Med Biol Eng Comput; 2024 Apr; 62(4):1121-1137. PubMed ID: 38150110 [TBL] [Abstract][Full Text] [Related]
5. PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images. Xu Y; Cai M; Lin L; Zhang Y; Hu H; Peng Z; Zhang Q; Chen Q; Mao X; Iwamoto Y; Han XH; Chen YW; Tong R Med Phys; 2021 Jul; 48(7):3752-3766. PubMed ID: 33950526 [TBL] [Abstract][Full Text] [Related]
6. A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans. Chen Y; Zheng C; Zhou T; Feng L; Liu L; Zeng Q; Wang G Comput Biol Med; 2023 Jan; 152():106421. PubMed ID: 36527780 [TBL] [Abstract][Full Text] [Related]
7. Analysis of segmentation of lung parenchyma based on deep learning methods. Tan W; Huang P; Li X; Ren G; Chen Y; Yang J J Xray Sci Technol; 2021; 29(6):945-959. PubMed ID: 34487013 [TBL] [Abstract][Full Text] [Related]
8. Lung_PAYNet: a pyramidal attention based deep learning network for lung nodule segmentation. Bruntha PM; Pandian SIA; Sagayam KM; Bandopadhyay S; Pomplun M; Dang H Sci Rep; 2022 Nov; 12(1):20330. PubMed ID: 36434060 [TBL] [Abstract][Full Text] [Related]
9. Deep Deconvolutional Residual Network Based Automatic Lung Nodule Segmentation. Singadkar G; Mahajan A; Thakur M; Talbar S J Digit Imaging; 2020 Jun; 33(3):678-684. PubMed ID: 32026218 [TBL] [Abstract][Full Text] [Related]
10. LGAN: Lung segmentation in CT scans using generative adversarial network. Tan J; Jing L; Huo Y; Li L; Akin O; Tian Y Comput Med Imaging Graph; 2021 Jan; 87():101817. PubMed ID: 33278767 [TBL] [Abstract][Full Text] [Related]
11. A fully automatic segmentation algorithm for CT lung images based on random forest. Liu C; Zhao R; Pang M Med Phys; 2020 Feb; 47(2):518-529. PubMed ID: 31788807 [TBL] [Abstract][Full Text] [Related]
12. Multi-Attention Segmentation Networks Combined with the Sobel Operator for Medical Images. Lu F; Tang C; Liu T; Zhang Z; Li L Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904754 [TBL] [Abstract][Full Text] [Related]
13. Automatic lung tumor segmentation from CT images using improved 3D densely connected UNet. Zhang G; Yang Z; Jiang S Med Biol Eng Comput; 2022 Nov; 60(11):3311-3323. PubMed ID: 36169904 [TBL] [Abstract][Full Text] [Related]
14. Automatic segmentation of organs-at-risks of nasopharynx cancer and lung cancer by cross-layer attention fusion network with TELD-Loss. Liu Z; Sun C; Wang H; Li Z; Gao Y; Lei W; Zhang S; Wang G; Zhang S Med Phys; 2021 Nov; 48(11):6987-7002. PubMed ID: 34608652 [TBL] [Abstract][Full Text] [Related]
15. An effective deep network for automatic segmentation of complex lung tumors in CT images. Wang B; Chen K; Tian X; Yang Y; Zhang X Med Phys; 2021 Sep; 48(9):5004-5016. PubMed ID: 34224147 [TBL] [Abstract][Full Text] [Related]
16. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393 [TBL] [Abstract][Full Text] [Related]
17. Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images. Zhang B; Qi S; Wu Y; Pan X; Yao Y; Qian W; Guan Y Comput Methods Programs Biomed; 2022 Jul; 222():106946. PubMed ID: 35716533 [TBL] [Abstract][Full Text] [Related]
18. Multi-scale dense selective network based on border modeling for lung nodule segmentation. Wang H; Xiao N; Luo S; Li R; Zhao J; Ma Y; Zhao J; Qiang Y; Wang L; Lian J Int J Comput Assist Radiol Surg; 2023 May; 18(5):845-853. PubMed ID: 36637749 [TBL] [Abstract][Full Text] [Related]
19. Self-channel-and-spatial-attention neural network for automated multi-organ segmentation on head and neck CT images. Gou S; Tong N; Qi S; Yang S; Chin R; Sheng K Phys Med Biol; 2020 Dec; 65(24):245034. PubMed ID: 32097892 [TBL] [Abstract][Full Text] [Related]
20. Dmbg-Net: Dilated multiresidual boundary guidance network for COVID-19 infection segmentation. Xiang Z; Mao Q; Wang J; Tian Y; Zhang Y; Wang W Math Biosci Eng; 2023 Nov; 20(11):20135-20154. PubMed ID: 38052640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]