These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36791779)

  • 1. Mechanisms of Photothermalization in Plasmonic Nanostructures: Insights into the Steady State.
    Wu S; Sheldon M
    Annu Rev Phys Chem; 2023 Apr; 74():521-545. PubMed ID: 36791779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing steady state photothermalization dynamics in copper and gold nanostructures.
    Hogan N; Sheldon M
    J Chem Phys; 2020 Feb; 152(6):061101. PubMed ID: 32061209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot Electrons in a Steady State: Interband vs Intraband Excitation of Plasmonic Gold.
    Lee A; Wu S; Yim JE; Zhao B; Sheldon MT
    ACS Nano; 2024 Jul; 18(29):19077-19085. PubMed ID: 38996185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures.
    Schirato A; Sanders SK; Proietti Zaccaria R; Nordlander P; Della Valle G; Alabastri A
    ACS Nano; 2024 Jul; 18(29):18933-18947. PubMed ID: 38990155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the Mechanism of Plasmon Photocatalysis via Multiquantum Vibrational Excitation.
    Jeong J; Shin HH; Kim ZH
    ACS Nano; 2024 Sep; 18(36):25290-25301. PubMed ID: 39185823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot Charge Carrier Transmission from Plasmonic Nanostructures.
    Christopher P; Moskovits M
    Annu Rev Phys Chem; 2017 May; 68():379-398. PubMed ID: 28301756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Hot" electrons in metallic nanostructures-non-thermal carriers or heating?
    Dubi Y; Sivan Y
    Light Sci Appl; 2019; 8():89. PubMed ID: 31645933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry.
    Keller EL; Kang H; Haynes CL; Frontiera RR
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40577-40584. PubMed ID: 30427654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations.
    Cui L; Zhu Y; Nordlander P; Di Ventra M; Natelson D
    Nano Lett; 2021 Mar; 21(6):2658-2665. PubMed ID: 33710898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities.
    Faucheaux JA; Stanton AL; Jain PK
    J Phys Chem Lett; 2014 Mar; 5(6):976-85. PubMed ID: 26270976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.
    Harutyunyan H; Martinson AB; Rosenmann D; Khorashad LK; Besteiro LV; Govorov AO; Wiederrecht GP
    Nat Nanotechnol; 2015 Sep; 10(9):770-4. PubMed ID: 26237345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot carrier multiplication in plasmonic photocatalysis.
    Zhou L; Lou M; Bao JL; Zhang C; Liu JG; Martirez JMP; Tian S; Yuan L; Swearer DF; Robatjazi H; Carter EA; Nordlander P; Halas NJ
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures.
    Verma S; Pathak AK; Rahman BMA
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-State Plasmonic Solar Cells.
    Ueno K; Oshikiri T; Sun Q; Shi X; Misawa H
    Chem Rev; 2018 Mar; 118(6):2955-2993. PubMed ID: 28737382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.