BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36792372)

  • 1. Atlas-scale single-cell chromatin accessibility using nanowell-based combinatorial indexing.
    O'Connell BL; Nichols RV; Pokholok D; Thomas J; Acharya SN; Nishida A; Thornton CA; Co M; Fields AJ; Steemers FJ; Adey AC
    Genome Res; 2023 Feb; 33(2):208-217. PubMed ID: 36792372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The accessible chromatin landscape of the murine hippocampus at single-cell resolution.
    Sinnamon JR; Torkenczy KA; Linhoff MW; Vitak SA; Mulqueen RM; Pliner HA; Trapnell C; Steemers FJ; Mandel G; Adey AC
    Genome Res; 2019 May; 29(5):857-869. PubMed ID: 30936163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-content single-cell combinatorial indexing.
    Mulqueen RM; Pokholok D; O'Connell BL; Thornton CA; Zhang F; O'Roak BJ; Link J; Yardımcı GG; Sears RC; Steemers FJ; Adey AC
    Nat Biotechnol; 2021 Dec; 39(12):1574-1580. PubMed ID: 34226710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility.
    Lareau CA; Duarte FM; Chew JG; Kartha VK; Burkett ZD; Kohlway AS; Pokholok D; Aryee MJ; Steemers FJ; Lebofsky R; Buenrostro JD
    Nat Biotechnol; 2019 Aug; 37(8):916-924. PubMed ID: 31235917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens.
    Liscovitch-Brauer N; Montalbano A; Deng J; Méndez-Mancilla A; Wessels HH; Moss NG; Kung CY; Sookdeo A; Guo X; Geller E; Jaini S; Smibert P; Sanjana NE
    Nat Biotechnol; 2021 Oct; 39(10):1270-1277. PubMed ID: 33927415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combinatorial indexing strategy for low-cost epigenomic profiling of plant single cells.
    Tu X; Marand AP; Schmitz RJ; Zhong S
    Plant Commun; 2022 Jul; 3(4):100308. PubMed ID: 35605196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive single-cell chromatin accessibility assay and transcriptome coassay with METATAC.
    Wu H; Li X; Jian F; Yisimayi A; Zheng Y; Tan L; Xing D; Xie XS
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2206450119. PubMed ID: 36161934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CAraCAl: CAMML with the integration of chromatin accessibility.
    Schiebout C; Frost HR
    BMC Bioinformatics; 2024 Jun; 25(1):212. PubMed ID: 38872103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks.
    Yuan H; Kelley DR
    Nat Methods; 2022 Sep; 19(9):1088-1096. PubMed ID: 35941239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell chromatin accessibility reveals principles of regulatory variation.
    Buenrostro JD; Wu B; Litzenburger UM; Ruff D; Gonzales ML; Snyder MP; Chang HY; Greenleaf WJ
    Nature; 2015 Jul; 523(7561):486-90. PubMed ID: 26083756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient low-cost chromatin profiling with CUT&Tag.
    Kaya-Okur HS; Janssens DH; Henikoff JG; Ahmad K; Henikoff S
    Nat Protoc; 2020 Oct; 15(10):3264-3283. PubMed ID: 32913232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag.
    Janssens DH; Greene JE; Wu SJ; Codomo CA; Minot SS; Furlan SN; Ahmad K; Henikoff S
    Nat Protoc; 2024 Jan; 19(1):83-112. PubMed ID: 37935964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplex indexing approach for the detection of DNase I hypersensitive sites in single cells.
    Gao W; Ku WL; Pan L; Perrie J; Zhao T; Hu G; Wu Y; Zhu J; Ni B; Zhao K
    Nucleic Acids Res; 2021 Jun; 49(10):e56. PubMed ID: 33693880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Massive-scale single-cell chromatin accessibility sequencing using combinatorial fluidic indexing.
    Zhang X; Marand AP; Yan H; Schmitz RJ
    bioRxiv; 2024 Feb; ():. PubMed ID: 37786710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility.
    Cusanovich DA; Hill AJ; Aghamirzaie D; Daza RM; Pliner HA; Berletch JB; Filippova GN; Huang X; Christiansen L; DeWitt WS; Lee C; Regalado SG; Read DF; Steemers FJ; Disteche CM; Trapnell C; Shendure J
    Cell; 2018 Aug; 174(5):1309-1324.e18. PubMed ID: 30078704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq.
    Swanson E; Lord C; Reading J; Heubeck AT; Genge PC; Thomson Z; Weiss MD; Li XJ; Savage AK; Green RR; Torgerson TR; Bumol TF; Graybuck LT; Skene PJ
    Elife; 2021 Apr; 10():. PubMed ID: 33835024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Destin: toolkit for single-cell analysis of chromatin accessibility.
    Urrutia E; Chen L; Zhou H; Jiang Y
    Bioinformatics; 2019 Oct; 35(19):3818-3820. PubMed ID: 30821321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing.
    Cusanovich DA; Daza R; Adey A; Pliner HA; Christiansen L; Gunderson KL; Steemers FJ; Trapnell C; Shendure J
    Science; 2015 May; 348(6237):910-4. PubMed ID: 25953818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developments in high-throughput functional epigenomics: CRISPR-single-cell assay for transposase-accessible chromatin using sequencing screens.
    E Yan R; P Greenfield J; Dahmane N
    Epigenomics; 2022 Jun; 14(11):645-649. PubMed ID: 35574596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.