These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 36792481)
1. Modeling and tracking control of dielectric elastomer actuators based on fractional calculus. Wu J; Xu Z; Zhang Y; Su CY; Wang Y ISA Trans; 2023 Jul; 138():687-695. PubMed ID: 36792481 [TBL] [Abstract][Full Text] [Related]
2. Control of a muscle-like soft actuator via a bioinspired approach. Cao J; Liang W; Zhu J; Ren Q Bioinspir Biomim; 2018 Oct; 13(6):066005. PubMed ID: 30221628 [TBL] [Abstract][Full Text] [Related]
3. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model. Gu G; Zhu L Rev Sci Instrum; 2010 Aug; 81(8):085104. PubMed ID: 20815625 [TBL] [Abstract][Full Text] [Related]
4. Iterative Learning Control for Motion Trajectory Tracking of a Circular Soft Crawling Robot. Chi H; Li X; Liang W; Cao J; Ren Q Front Robot AI; 2019; 6():113. PubMed ID: 33501128 [TBL] [Abstract][Full Text] [Related]
5. Fractional-Order Approximation of PID Controller for Buck-Boost Converters. S Sánchez AG; Soto-Vega J; Tlelo-Cuautle E; Rodríguez-Licea MA Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34063909 [TBL] [Abstract][Full Text] [Related]
6. Analytical design of fractional-order proportional-integral controllers for time-delay processes. Vu TN; Lee M ISA Trans; 2013 Sep; 52(5):583-91. PubMed ID: 23856598 [TBL] [Abstract][Full Text] [Related]
7. Dielectric Elastomer Actuators with Enhanced Durability by Introducing a Reservoir Layer. Jung S; Kang M; Han MW Polymers (Basel); 2024 May; 16(9):. PubMed ID: 38732745 [TBL] [Abstract][Full Text] [Related]
8. Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning. Wang T; San-Millan A; Aphale SS ISA Trans; 2024 Apr; 147():153-162. PubMed ID: 38302314 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear Tracking Control of a Conductive Supercoiled Polymer Actuator. Luong TA; Cho KH; Song MG; Koo JC; Choi HR; Moon H Soft Robot; 2018 Apr; 5(2):190-203. PubMed ID: 29189106 [TBL] [Abstract][Full Text] [Related]
11. Data-driven fractional order feedback and model-less feedforward control of a XY reluctance-actuated micropositioning stage. Zhang X; Lai L; Li P; Zhu LM Rev Sci Instrum; 2022 Nov; 93(11):115002. PubMed ID: 36461484 [TBL] [Abstract][Full Text] [Related]
12. Additively manufactured unimorph dielectric elastomer actuators: Design, materials, and fabrication. Sikulskyi S; Ren Z; Mekonnen DT; Holyoak A; Srinivasaraghavan Govindarajan R; Kim D Front Robot AI; 2022; 9():1034914. PubMed ID: 36591410 [TBL] [Abstract][Full Text] [Related]
13. An integer order approximation method based on stability boundary locus for fractional order derivative/integrator operators. Deniz FN; Alagoz BB; Tan N; Atherton DP ISA Trans; 2016 May; 62():154-63. PubMed ID: 26876378 [TBL] [Abstract][Full Text] [Related]
14. The Soft Ray-Inspired Robots Actuated by Solid-Liquid Interpenetrating Silicone-Based Dielectric Elastomer Actuator. Xu J; Dong Y; Yang J; Jiang Z; Tang L; Chen X; Cao K Soft Robot; 2023 Apr; 10(2):354-364. PubMed ID: 36318819 [TBL] [Abstract][Full Text] [Related]
15. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. Sharma R; Gaur P; Mittal AP ISA Trans; 2015 Sep; 58():279-91. PubMed ID: 25896827 [TBL] [Abstract][Full Text] [Related]
16. Fractional order neural sliding mode control based on the FO-Hammerstein model of piezoelectric actuator. Yang L; Zhao Z; Li D ISA Trans; 2023 Nov; 142():515-526. PubMed ID: 37659871 [TBL] [Abstract][Full Text] [Related]
17. Rate-Dependent Modeling of Piezoelectric Actuators for Nano Manipulation Based on Fractional Hammerstein Model. Yang L; Zhao Z; Zhang Y; Li D Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056206 [TBL] [Abstract][Full Text] [Related]
18. Precision Position Control of a Voice Coil Motor Using Self-Tuning Fractional Order Proportional-Integral-Derivative Control. Chen SY; Chia CS Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404379 [TBL] [Abstract][Full Text] [Related]
19. Dynamic modeling of dielectric elastomer actuator with conical shape. Huang P; Ye W; Wang Y PLoS One; 2020; 15(8):e0235229. PubMed ID: 32797117 [TBL] [Abstract][Full Text] [Related]
20. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model. Li P; Yan F; Ge C; Zhang M Rev Sci Instrum; 2012 Aug; 83(8):085114. PubMed ID: 22938339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]