These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36792516)

  • 1. Efficiently predicting directional carrier mobilities in organic materials with the Boltzmann transport equation.
    Knepp ZJ; Masso GB; Fredin LA
    J Chem Phys; 2023 Feb; 158(6):064704. PubMed ID: 36792516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the theoretical description of charge transport in organic crystals.
    da Cunha WF; de Brito SS; de Sousa LE; Enders BG; de Oliveira Neto PH
    J Mol Model; 2019 Mar; 25(3):83. PubMed ID: 30826977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier Induced Hopping to Band Conduction in Pentacene.
    Rani V; Kumar P; Sharma A; Yadav S; Singh B; Ray N; Ghosh S
    Sci Rep; 2019 Dec; 9(1):20193. PubMed ID: 31882781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics.
    Giannini S; Blumberger J
    Acc Chem Res; 2022 Mar; 55(6):819-830. PubMed ID: 35196456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials.
    Poncé S; Li W; Reichardt S; Giustino F
    Rep Prog Phys; 2020 Mar; 83(3):036501. PubMed ID: 31923906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of lattice dynamics on charge transport in the dianthra[2,3-b:2',3'-f]-thieno[3,2-b]thiophene organic crystals from a theoretical study.
    Nan G; Li Z
    Phys Chem Chem Phys; 2012 Jul; 14(26):9451-9. PubMed ID: 22648093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors.
    Zhang Y; Duan Y; Song L; Zheng D; Zhang M; Zhao G
    J Chem Phys; 2017 Sep; 147(11):114905. PubMed ID: 28938815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real Temperature Model of Dynamic Disorder in Molecular Crystals.
    Knepp ZJ; Fredin LA
    J Phys Chem A; 2022 May; 126(20):3265-3272. PubMed ID: 35561418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dichotomy between the band and hopping transport in organic crystals: insights from experiments.
    Yavuz I
    Phys Chem Chem Phys; 2017 Oct; 19(38):25819-25828. PubMed ID: 28932847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first principle calculations.
    Kobayashi H; Kobayashi N; Hosoi S; Koshitani N; Murakami D; Shirasawa R; Kudo Y; Hobara D; Tokita Y; Itabashi M
    J Chem Phys; 2013 Jul; 139(1):014707. PubMed ID: 23822320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge carrier mobilities in organic semiconductor crystals based on the spectral overlap.
    Stehr V; Fink RF; Deibel C; Engels B
    J Comput Chem; 2016 Sep; 37(23):2146-56. PubMed ID: 27371816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic charge-mobility in benzothieno[3,2-b][1]benzothiophene (BTBT) organic semiconductors is enhanced with long alkyl side-chains.
    Alkan M; Yavuz I
    Phys Chem Chem Phys; 2018 Jun; 20(23):15970-15979. PubMed ID: 29850708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning charge transport in solution-sheared organic semiconductors using lattice strain.
    Giri G; Verploegen E; Mannsfeld SC; Atahan-Evrenk S; Kim DH; Lee SY; Becerril HA; Aspuru-Guzik A; Toney MF; Bao Z
    Nature; 2011 Dec; 480(7378):504-8. PubMed ID: 22193105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles prediction of charge mobility in carbon and organic nanomaterials.
    Xi J; Long M; Tang L; Wang D; Shuai Z
    Nanoscale; 2012 Aug; 4(15):4348-69. PubMed ID: 22695470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jumping Kinetic Monte Carlo: Fast and Accurate Simulations of Partially Delocalized Charge Transport in Organic Semiconductors.
    Willson JT; Liu W; Balzer D; Kassal I
    J Phys Chem Lett; 2023 Apr; 14(15):3757-3764. PubMed ID: 37044057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical comparative studies on transport properties of pentacene, pentathienoacene, and 6,13-dichloropentacene.
    Zhang X; Yang X; Geng H; Nan G; Sun X; Xi J; Xu X
    J Comput Chem; 2015 May; 36(12):891-900. PubMed ID: 25809856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Surface Hopping Approach for Modeling Charge Transport in Organic Semiconductors.
    Roosta S; Ghalami F; Elstner M; Xie W
    J Chem Theory Comput; 2022 Mar; 18(3):1264-1274. PubMed ID: 35179894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Alkyl Chain Length on Charge Transport Property of Anthracene-Based Organic Semiconductors.
    Zhang D; Yokomori S; Kameyama R; Zhao C; Ueda A; Zhang L; Kumai R; Murakami Y; Meng H; Mori H
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):989-998. PubMed ID: 33332081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Fluoroalkylation on the n-Type Charge Transport of Two Naphthodithiophene Diimide Derivatives.
    Ricci G; Canola S; Dai Y; Fazzi D; Negri F
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.