These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36792531)
1. Climate change, host plant availability, and irrigation shape future region-specific distributions of the Sitobion grain aphid complex. Wang BX; Hof AR; Matson KD; van Langevelde F; Ma CS Pest Manag Sci; 2023 Jul; 79(7):2311-2324. PubMed ID: 36792531 [TBL] [Abstract][Full Text] [Related]
2. Water deficit and aphid resilience on wheat: examining Sitobion avenae F. and their bacterial symbionts interplay under controlled laboratory conditions. Díaz-Hernández AM; Sepúlveda DA; González-González A; Briones LM; Correa MCG; Figueroa CC Pest Manag Sci; 2024 Oct; ():. PubMed ID: 39350697 [TBL] [Abstract][Full Text] [Related]
3. The potential distribution of the Russian wheat aphid (Diuraphis noxia): an updated distribution model including irrigation improves model fit for predicting potential spread. Avila GA; Davidson M; van Helden M; Fagan L Bull Entomol Res; 2019 Feb; 109(1):90-101. PubMed ID: 29665868 [TBL] [Abstract][Full Text] [Related]
4. Invasive Cereal Aphids of North America: Ecology and Pest Management. Brewer MJ; Peairs FB; Elliott NC Annu Rev Entomol; 2019 Jan; 64():73-93. PubMed ID: 30372159 [TBL] [Abstract][Full Text] [Related]
5. Hybridisation has shaped a recent radiation of grass-feeding aphids. Mathers TC; Wouters RHM; Mugford ST; Biello R; van Oosterhout C; Hogenhout SA BMC Biol; 2023 Jul; 21(1):157. PubMed ID: 37443008 [TBL] [Abstract][Full Text] [Related]
6. Sitobion miscanthi L type symbiont enhances the fitness and feeding behavior of the host grain aphid. Li X; Sun Y; Tian X; Wang C; Li Q; Li Q; Zhu S; Lan C; Zhang Y; Li X; Ding R; Zhu X Pest Manag Sci; 2023 Apr; 79(4):1362-1371. PubMed ID: 36458953 [TBL] [Abstract][Full Text] [Related]
7. Insight into watery saliva proteomes of the grain aphid, Sitobion avenae. Zhang Y; Fu Y; Francis F; Liu X; Chen J Arch Insect Biochem Physiol; 2021 Jan; 106(1):e21752. PubMed ID: 33084142 [TBL] [Abstract][Full Text] [Related]
8. Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants. Zhang M; Zhou Y; Wang H; Jones H; Gao Q; Wang D; Ma Y; Xia L BMC Genomics; 2013 Aug; 14():560. PubMed ID: 23957588 [TBL] [Abstract][Full Text] [Related]
9. Simulation modelling of the population dynamics of cereal aphids. Carter N Biosystems; 1985; 18(1):111-9. PubMed ID: 3840702 [TBL] [Abstract][Full Text] [Related]
10. Evidence of plastic probing behavior in a 'superclone' of the grain aphid Sitobion avenae. Barrios-SanMartín J; Figueroa CC; Ramírez CC Bull Entomol Res; 2016 Dec; 106(6):801-808. PubMed ID: 27573283 [TBL] [Abstract][Full Text] [Related]
11. Life-history responses of insects to water-deficit stress: a case study with the aphid Sitobion avenae. Liu D; Dai P; Li S; Ahmed SS; Shang Z; Shi X BMC Ecol; 2018 May; 18(1):17. PubMed ID: 29843697 [TBL] [Abstract][Full Text] [Related]
12. Low bacterial community diversity in two introduced aphid pests revealed with 16S rRNA amplicon sequencing. Zepeda-Paulo F; Ortiz-Martínez S; Silva AX; Lavandero B PeerJ; 2018; 6():e4725. PubMed ID: 29761046 [TBL] [Abstract][Full Text] [Related]
13. Diversity, frequency, and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests. Sepúlveda DA; Zepeda-Paulo F; Ramírez CC; Lavandero B; Figueroa CC Insect Sci; 2017 Jun; 24(3):511-521. PubMed ID: 26773849 [TBL] [Abstract][Full Text] [Related]
14. Identification and Risk Assessment for Worldwide Invasion and Spread of Tuta absoluta with a Focus on Sub-Saharan Africa: Implications for Phytosanitary Measures and Management. Tonnang HE; Mohamed SA; Khamis F; Ekesi S PLoS One; 2015; 10(8):e0135283. PubMed ID: 26252204 [TBL] [Abstract][Full Text] [Related]
15. Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Svobodová E; Trnka M; Dubrovský M; Semerádová D; Eitzinger J; Stěpánek P; Zalud Z Pest Manag Sci; 2014 May; 70(5):708-15. PubMed ID: 23901033 [TBL] [Abstract][Full Text] [Related]
16. Cereal aphids differently affect benzoxazinoid levels in durum wheat. Shavit R; Batyrshina ZS; Dotan N; Tzin V PLoS One; 2018; 13(12):e0208103. PubMed ID: 30507950 [TBL] [Abstract][Full Text] [Related]
17. A chromosome-level draft genome of the grain aphid Sitobion miscanthi. Jiang X; Zhang Q; Qin Y; Yin H; Zhang S; Li Q; Zhang Y; Fan J; Chen J Gigascience; 2019 Aug; 8(8):. PubMed ID: 31430367 [TBL] [Abstract][Full Text] [Related]
18. The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect. Alford L; Tougeron K; Pierre JS; Burel F; van Baaren J Insect Sci; 2018 Oct; 25(5):905-915. PubMed ID: 28322022 [TBL] [Abstract][Full Text] [Related]
19. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming. Ma G; Ma CS J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662 [TBL] [Abstract][Full Text] [Related]
20. Climate change effects on the diversity and distribution of soybean true bugs pests. Chen J; Jiang K; Li Y; Wang S; Bu W Pest Manag Sci; 2024 Oct; 80(10):5157-5167. PubMed ID: 39392090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]