These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36792600)

  • 1. Chemoproteomic discovery of a human RNA ligase.
    Yuan Y; Stumpf FM; Schlor LA; Schmidt OP; Saumer P; Huber LB; Frese M; Höllmüller E; Scheffner M; Stengel F; Diederichs K; Marx A
    Nat Commun; 2023 Feb; 14(1):842. PubMed ID: 36792600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi.
    Unciuleac MC; Shuman S
    RNA; 2015 May; 21(5):824-32. PubMed ID: 25740837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual mechanisms whereby a broken RNA end assists the catalysis of its repair by T4 RNA ligase 2.
    Nandakumar J; Shuman S
    J Biol Chem; 2005 Jun; 280(25):23484-9. PubMed ID: 15851476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA and RNA ligases: structural variations and shared mechanisms.
    Pascal JM
    Curr Opin Struct Biol; 2008 Feb; 18(1):96-105. PubMed ID: 18262407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of 3'-Phosphate RNA Ligase Paralogs RtcB1, RtcB2, and RtcB3 from Myxococcus xanthus Highlights DNA and RNA 5'-Phosphate Capping Activity of RtcB3.
    Maughan WP; Shuman S
    J Bacteriol; 2015 Nov; 197(22):3616-24. PubMed ID: 26350128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctive kinetics and substrate specificities of plant and fungal tRNA ligases.
    Remus BS; Shuman S
    RNA; 2014 Apr; 20(4):462-73. PubMed ID: 24554441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme.
    Zhelkovsky AM; McReynolds LA
    BMC Mol Biol; 2012 Jul; 13():24. PubMed ID: 22809063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the tRNA ligases of pathogenic fungi Aspergillus fumigatus and Coccidioides immitis.
    Remus BS; Schwer B; Shuman S
    RNA; 2016 Oct; 22(10):1500-9. PubMed ID: 27492257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis.
    Viollet S; Fuchs RT; Munafo DB; Zhuang F; Robb GB
    BMC Biotechnol; 2011 Jul; 11():72. PubMed ID: 21722378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and roles of (t)RNA ligases.
    Popow J; Schleiffer A; Martinez J
    Cell Mol Life Sci; 2012 Aug; 69(16):2657-70. PubMed ID: 22426497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the fidelity of nick sealing by Deinococcus radiodurans RNA ligase.
    Schmier BJ; Shuman S
    J Bacteriol; 2014 May; 196(9):1704-12. PubMed ID: 24532777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA ligases.
    Nichols NM; Tabor S; McReynolds LA
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.15. PubMed ID: 18972386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of wheat germ RNA ligase. II. Mechanism of action of wheat germ RNA ligase.
    Pick L; Furneaux H; Hurwitz J
    J Biol Chem; 1986 May; 261(15):6694-704. PubMed ID: 3009471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimeric padlock and iLock probes for increased efficiency of targeted RNA detection.
    Krzywkowski T; Kühnemund M; Nilsson M
    RNA; 2019 Jan; 25(1):82-89. PubMed ID: 30309880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro circularization of RNA.
    Müller S; Appel B
    RNA Biol; 2017 Aug; 14(8):1018-1027. PubMed ID: 27668458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of yeast and amphioxus tRNA ligase in IRE1alpha-dependent XBP1 mRNA splicing.
    Iwawaki T; Tokuda M
    Biochem Biophys Res Commun; 2011 Oct; 413(4):527-31. PubMed ID: 21924241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for the GTP specificity of the RNA kinase domain of fungal tRNA ligase.
    Remus BS; Goldgur Y; Shuman S
    Nucleic Acids Res; 2017 Dec; 45(22):12945-12953. PubMed ID: 29165709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation.
    Unciuleac MC; Goldgur Y; Shuman S
    Nucleic Acids Res; 2020 Jun; 48(10):5603-5615. PubMed ID: 32315072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinetic framework for tRNA ligase and enforcement of a 2'-phosphate requirement for ligation highlights the design logic of an RNA repair machine.
    Remus BS; Shuman S
    RNA; 2013 May; 19(5):659-69. PubMed ID: 23515942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis.
    Gu H; Yoshinari S; Ghosh R; Ignatochkina AV; Gollnick PD; Murakami KS; Ho CK
    Nucleic Acids Res; 2016 Mar; 44(5):2337-47. PubMed ID: 26896806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.