These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36792624)

  • 1. Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses.
    Tian Y; Shi C; Malo CU; Kwatcho Kengdo S; Heinzle J; Inselsbacher E; Ottner F; Borken W; Michel K; Schindlbacher A; Wanek W
    Nat Commun; 2023 Feb; 14(1):864. PubMed ID: 36792624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions.
    Shi C; Urbina-Malo C; Tian Y; Heinzle J; Kwatcho Kengdo S; Inselsbacher E; Borken W; Schindlbacher A; Wanek W
    Glob Chang Biol; 2023 Apr; 29(8):2188-2202. PubMed ID: 36622092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term soil warming decreases soil microbial necromass carbon by adversely affecting its production and decomposition.
    Liu X; Tian Y; Heinzle J; Salas E; Kwatcho-Kengdo S; Borken W; Schindlbacher A; Wanek W
    Glob Chang Biol; 2024 Jun; 30(6):e17379. PubMed ID: 39031669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warming drives sustained plant phosphorus demand in a humid tropical forest.
    Lie Z; Zhou G; Huang W; Kadowaki K; Tissue DT; Yan J; Peñuelas J; Sardans J; Li Y; Liu S; Chu G; Meng Z; He X; Liu J
    Glob Chang Biol; 2022 Jul; 28(13):4085-4096. PubMed ID: 35412664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil.
    Kwatcho Kengdo S; Peršoh D; Schindlbacher A; Heinzle J; Tian Y; Wanek W; Borken W
    Glob Chang Biol; 2022 May; 28(10):3441-3458. PubMed ID: 35253326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.
    Lladó S; López-Mondéjar R; Baldrian P
    Microbiol Mol Biol Rev; 2017 Jun; 81(2):. PubMed ID: 28404790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term warming increased carbon sequestration capacity in a humid subtropical forest.
    Liu X; Lie Z; Reich PB; Zhou G; Yan J; Huang W; Wang Y; Peñuelas J; Tissue DT; Zhao M; Wu T; Wu D; Xu W; Li Y; Tang X; Zhou S; Meng Z; Liu S; Chu G; Zhang D; Zhang Q; He X; Liu J
    Glob Chang Biol; 2024 Jan; 30(1):e17072. PubMed ID: 38273547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils.
    Pold G; Billings AF; Blanchard JL; Burkhardt DB; Frey SD; Melillo JM; Schnabel J; van Diepen LT; DeAngelis KM
    Appl Environ Microbiol; 2016 Nov; 82(22):6518-6530. PubMed ID: 27590813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe.
    Song B; Niu S; Zhang Z; Yang H; Li L; Wan S
    PLoS One; 2012; 7(3):e33217. PubMed ID: 22479373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Warming leads to more closed nitrogen cycling in nitrogen-rich tropical forests.
    Lie Z; Huang W; Liu X; Zhou G; Yan J; Li Y; Huang C; Wu T; Fang X; Zhao M; Liu S; Chu G; Kadowaki K; Pan X; Liu J
    Glob Chang Biol; 2021 Feb; 27(3):664-674. PubMed ID: 33140554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests.
    Gross A; Lin Y; Weber PK; Pett-Ridge J; Silver WL
    Ecology; 2020 Feb; 101(2):e02928. PubMed ID: 31715005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in carbon input by enhanced fine root turnover in a long-term warmed forest soil.
    Kengdo SK; Ahrens B; Tian Y; Heinzle J; Wanek W; Schindlbacher A; Borken W
    Sci Total Environ; 2023 Jan; 855():158800. PubMed ID: 36116665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial competition for phosphorus limits the CO
    Jiang M; Crous KY; Carrillo Y; Macdonald CA; Anderson IC; Boer MM; Farrell M; Gherlenda AN; Castañeda-Gómez L; Hasegawa S; Jarosch K; Milham PJ; Ochoa-Hueso R; Pathare V; Pihlblad J; Piñeiro J; Powell JR; Power SA; Reich PB; Riegler M; Zaehle S; Smith B; Medlyn BE; Ellsworth DS
    Nature; 2024 Jun; 630(8017):660-665. PubMed ID: 38839955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland.
    Dijkstra FA; Pendall E; Morgan JA; Blumenthal DM; Carrillo Y; LeCain DR; Follett RF; Williams DG
    New Phytol; 2012 Nov; 196(3):807-815. PubMed ID: 23005343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming.
    Walker TWN; Gavazov K; Guillaume T; Lambert T; Mariotte P; Routh D; Signarbieux C; Block S; Münkemüller T; Nomoto H; Crowther TW; Richter A; Buttler A; Alexander JM
    Elife; 2022 May; 11():. PubMed ID: 35550673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [oil microbial biomass and enzyme activities among different artificial forests in Ziwuling, Northwest China.].
    Bai XJ; Zeng QC; An SS; Zhang HX; Wang BR
    Ying Yong Sheng Tai Xue Bao; 2018 Aug; 29(8):2695-2704. PubMed ID: 30182610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees.
    Rosling A; Midgley MG; Cheeke T; Urbina H; Fransson P; Phillips RP
    New Phytol; 2016 Feb; 209(3):1184-95. PubMed ID: 26510093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carbon sequestration response of aboveground biomass and soils to nutrient enrichment in boreal forests depends on baseline site productivity.
    Blaško R; Forsmark B; Gundale MJ; Lim H; Lundmark T; Nordin A
    Sci Total Environ; 2022 Sep; 838(Pt 3):156327. PubMed ID: 35640755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do Tasmanian devil declines impact ecosystem function?
    Stephenson T; Hudiburg T; Mathias JM; Jones M; Lynch LM
    Glob Chang Biol; 2024 Jul; 30(7):e17413. PubMed ID: 38982678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient cycling in forests.
    Attiwill PM; Adams MA
    New Phytol; 1993 Aug; 124(4):561-582. PubMed ID: 33874438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.