BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36792850)

  • 21. Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production.
    Hu D; Zhang J; Chu R; Yin Z; Hu J; Kristianto Nugroho Y; Li Z; Zhu L
    Bioresour Technol; 2021 Dec; 342():126003. PubMed ID: 34571333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A waste-based circular economy approach for phycoremediation of X-ray developer solution.
    Sharma S; Kant A; Sevda S; Aminabhavi TM; Garlapati VK
    Environ Pollut; 2023 Jan; 316(Pt 1):120530. PubMed ID: 36341826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal.
    Nguyen TDP; Tran TNT; Le TVA; Nguyen Phan TX; Show PL; Chia SR
    J Biosci Bioeng; 2019 Apr; 127(4):492-498. PubMed ID: 30416001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phycoremediation potential of microalgae species for ethidium bromide removal from aqueous media.
    de Almeida HC; Salomão ALS; Lambert J; Teixeira LCRS; Marques M
    Int J Phytoremediation; 2020; 22(11):1168-1174. PubMed ID: 32208865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nutrient removal and lipid production by the co-cultivation of Chlorella vulgaris and Scenedesmus dimorphus in landfill leachate diluted with recycled harvesting water.
    Tang C; Gao X; Hu D; Dai D; Qv M; Liu D; Zhu L
    Bioresour Technol; 2023 Feb; 369():128496. PubMed ID: 36526115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol.
    Gupta PL; Choi HJ; Lee SM
    Environ Sci Pollut Res Int; 2016 May; 23(10):10114-23. PubMed ID: 26867689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production.
    Chokshi K; Pancha I; Ghosh A; Mishra S
    Bioresour Technol; 2016 Dec; 221():455-460. PubMed ID: 27668878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioremediation potential of the Chlorella and Scenedesmus microalgae in explosives production effluents.
    Condori MAM; Condori MM; Gutierrez MEV; Choix FJ; García-Camacho F
    Sci Total Environ; 2024 Apr; 920():171004. PubMed ID: 38369159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Daphnia magna as biological harvesters for green microalgae grown on recirculated aquaculture system effluents.
    Gorzelnik SA; Zhu X; Angelidaki I; Koski M; Valverde-Pérez B
    Sci Total Environ; 2023 May; 873():162247. PubMed ID: 36791858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous microalgae cultivation for wastewater treatment - Development of a process strategy during day and night.
    Ortiz Tena F; Bickel V; Steinweg C; Posten C
    Sci Total Environ; 2024 Feb; 912():169082. PubMed ID: 38056654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation.
    Zhang Z; Guo L; Liao Q; Gao M; Zhao Y; Jin C; She Z; Wang G
    Bioresour Technol; 2021 Oct; 338():125574. PubMed ID: 34303141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microalgae based wastewater treatment: a shifting paradigm for the developing nations.
    Moondra N; Jariwala ND; Christian RA
    Int J Phytoremediation; 2021; 23(7):765-771. PubMed ID: 33327739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microalgae and immobilized TiO
    Marchão L; Fernandes JR; Sampaio A; Peres JA; Tavares PB; Lucas MS
    Water Res; 2021 Sep; 203():117464. PubMed ID: 34371233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid and biodiesel production by cultivation isolated strain
    Asadi P; Rad HA; Qaderi F
    J Environ Health Sci Eng; 2020 Dec; 18(2):573-585. PubMed ID: 33312584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of culture conditions on biomass yield of acclimatized microalgae in ozone pre-treated tannery effluent: A simultaneous exploration of bioremediation and lipid accumulation potential.
    Saranya D; Shanthakumar S
    J Environ Manage; 2020 Nov; 273():111129. PubMed ID: 32758913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced photoautotrophic growth of Chlorella vulgaris in starch wastewater through photo-regulation strategy.
    Ren H; Zhu G; Ni J; Shen M; Show PL; Sun FF
    Chemosphere; 2022 Nov; 307(Pt 1):135533. PubMed ID: 35787884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Green microalgae for combined sewage and tannery effluent treatment: Performance and lipid accumulation potential.
    Saranya D; Shanthakumar S
    J Environ Manage; 2019 Jul; 241():167-178. PubMed ID: 30999266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO
    Kong W; Kong J; Ma J; Lyu H; Feng S; Wang Z; Yuan P; Shen B
    J Environ Manage; 2021 Apr; 284():112070. PubMed ID: 33561760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An approach for dairy wastewater remediation using mixture of microalgae and biodiesel production for sustainable transportation.
    Chandra R; Pradhan S; Patel A; Ghosh UK
    J Environ Manage; 2021 Nov; 297():113210. PubMed ID: 34375226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.