BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36793307)

  • 1. Fibrinogen/poly(l-lactide-co-caprolactone) copolymer scaffold: A potent adhesive material for urethral tissue regeneration in urethral injury treatment.
    Jiao W; Yu W; Wang Y; Zhang J; Wang Y; He H; Shi G
    Regen Ther; 2023 Mar; 22():136-147. PubMed ID: 36793307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Poly(l-lactide-co-ɛ-caprolactone) and Poly(trimethylene carbonate) Membranes for Urethral Regeneration: An In Vitro and In Vivo Study.
    Sartoneva R; Nordback PH; Haimi S; Grijpma DW; Lehto K; Rooney N; Seppänen-Kaijansinkko R; Miettinen S; Lahdes-Vasama T
    Tissue Eng Part A; 2018 Jan; 24(1-2):117-127. PubMed ID: 28463605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of abdominal wall with scaffolds of electrospun poly (l-lactide-co caprolactone) and porcine fibrinogen: An experimental study in the canine.
    Li S; Su L; Li X; Yang L; Yang M; Zong H; Zong Q; Tang J; He H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110644. PubMed ID: 32204076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of blending poly (l-lactic acid) on in vivo performance of 3D-printed poly(l-lactide-co-caprolactone)/PLLA scaffolds.
    Duan R; Wang Y; Su D; Wang Z; Zhang Y; Du B; Liu L; Li X; Zhang Q
    Biomater Adv; 2022 Jul; 138():212948. PubMed ID: 35913240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide-
    Bar JK; Kowalczyk T; Grelewski PG; Stamnitz S; Paprocka M; Lis J; Lis-Nawara A; An S; Klimczak A
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preclinical animal study of electrospun poly (l-lactide-co-caprolactone) and formulated porcine fibrinogen for full-thickness diabetic wound regeneration.
    Wang G; Ju S; Li X; Cai Y; Li Y; Li W; Zhou S; He H; Dong Z; Fu W
    Biomed Pharmacother; 2023 Jun; 162():114734. PubMed ID: 37084560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold.
    Yang Z; Wu Y; Li C; Zhang T; Zou Y; Hui JH; Ge Z; Lee EH
    Tissue Eng Part A; 2012 Feb; 18(3-4):242-51. PubMed ID: 21902611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo.
    Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M
    Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441
    [No Abstract]   [Full Text] [Related]  

  • 12. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): In vivo performance in adult rabbits.
    Xie J; Han Z; Naito M; Maeyama A; Kim SH; Kim YH; Matsuda T
    J Biomed Mater Res B Appl Biomater; 2010 Jul; 94(1):80-8. PubMed ID: 20336738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blending with Poly(l-lactic acid) Improves the Printability of Poly(l-lactide-
    Duan R; Wang Y; Zhang Y; Wang Z; Du F; Du B; Su D; Liu L; Li X; Zhang Q
    ACS Omega; 2021 Jul; 6(28):18300-18313. PubMed ID: 34308061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering.
    Cai J; Xie X; Li D; Wang L; Jiang J; Mo X; Zhao J
    Biomater Sci; 2020 Aug; 8(16):4413-4425. PubMed ID: 32648862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve.
    Wang X; Liu J; Jing H; Li B; Sun Z; Li B; Kong D; Leng X; Wang Z
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111872. PubMed ID: 33579497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin Regeneration with a Scaffold of Predefined Shape and Bioactive Peptide Hydrogels.
    Im H; Kim SH; Kim SH; Jung Y
    Tissue Eng Part A; 2018 Oct; 24(19-20):1518-1530. PubMed ID: 29756539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold.
    Akkouch A; Zhang Z; Rouabhia M
    J Biomater Appl; 2014 Feb; 28(6):922-36. PubMed ID: 23640860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strength and histology of a nanofiber scaffold in rats.
    Fluke LM; Restrepo RD; Patel S; Hoagland BD; Krevetski LM; Stephenson JT
    J Surg Res; 2016 Oct; 205(2):432-439. PubMed ID: 27664893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.