BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36793803)

  • 1. Robotic locomotor training for spasticity, pain, and quality of life in individuals with chronic SCI: A pilot randomized controlled trial.
    Shackleton C; Evans R; West S; Derman W; Albertus Y
    Front Rehabil Sci; 2023; 4():1003360. PubMed ID: 36793803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic Locomotor Training Leads to Cardiovascular Changes in Individuals With Incomplete Spinal Cord Injury Over a 24-Week Rehabilitation Period: A Randomized Controlled Pilot Study.
    Evans RW; Shackleton CL; West S; Derman W; Laurie Rauch HG; Baalbergen E; Albertus Y
    Arch Phys Med Rehabil; 2021 Aug; 102(8):1447-1456. PubMed ID: 33839105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic locomotor training in a low-resource setting: a randomized pilot and feasibility trial.
    Shackleton C; Evans R; West S; Bantjes J; Swartz L; Derman W; Albertus Y
    Disabil Rehabil; 2023 Aug; ():1-10. PubMed ID: 37605978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foundational ingredients of robotic gait training for people with incomplete spinal cord injury during inpatient rehabilitation (FIRST): A randomized controlled trial protocol.
    Swank C; Holden A; McDonald L; Driver S; Callender L; Bennett M; Sikka S
    PLoS One; 2022; 17(5):e0267013. PubMed ID: 35536844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons.
    Stampacchia G; Rustici A; Bigazzi S; Gerini A; Tombini T; Mazzoleni S
    NeuroRehabilitation; 2016 Jun; 39(2):277-83. PubMed ID: 27372363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic Walking to Mitigate Bone Mineral Density Decline and Adverse Body Composition in Individuals With Incomplete Spinal Cord Injury: A Pilot Randomized Clinical Trial.
    Shackleton C; Evans R; West S; Derman W; Albertus Y
    Am J Phys Med Rehabil; 2022 Oct; 101(10):931-936. PubMed ID: 34864766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Duration of Outpatient Physical Therapy Episodes for Individuals with Spinal Cord Injury Based on Locomotor Training Strategy.
    Garnier-Villarreal M; Pinto D; Mummidisetty CK; Jayaraman A; Tefertiller C; Charlifue S; Taylor HB; Chang SH; McCombs N; Furbish CL; Field-Fote EC; Heinemann AW
    Arch Phys Med Rehabil; 2022 Apr; 103(4):665-675. PubMed ID: 34648804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial.
    Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A
    Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-based therapy for recovery of walking in chronic spinal cord injury: results from a secondary analysis to determine responsiveness to therapy.
    Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S
    Arch Phys Med Rehabil; 2014 Dec; 95(12):2247-52. PubMed ID: 25102385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial.
    Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S
    Arch Phys Med Rehabil; 2014 Dec; 95(12):2239-46.e2. PubMed ID: 25102384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exoskeleton gait training after spinal cord injury: An exploratory study on secondary health conditions.
    Baunsgaard CB; Nissen UV; Brust AK; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Penalva JB; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F
    J Rehabil Med; 2018 Sep; 50(9):806-813. PubMed ID: 30183055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.
    Gagnon DH; Vermette M; Duclos C; Aubertin-Leheudre M; Ahmed S; Kairy D
    Disabil Rehabil Assist Technol; 2019 Feb; 14(2):138-145. PubMed ID: 29256640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review.
    Tamburella F; Lorusso M; Tramontano M; Fadlun S; Masciullo M; Scivoletto G
    J Neuroeng Rehabil; 2022 Mar; 19(1):27. PubMed ID: 35292044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spasticity and Pain after Spinal Cord Injury: Impact on Daily Life and the Influence of Psychological Factors.
    Tibbett JA; Field-Fote EC; Thomas CK; Widerström-Noga EG
    PM R; 2020 Feb; 12(2):119-129. PubMed ID: 31298813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Wearable Powered Exoskeletal Training on Functional Mobility, Physiological Health and Quality of Life in Non-ambulatory Spinal Cord Injury Patients.
    Kim HS; Park JH; Lee HS; Lee JY; Jung JW; Park SB; Hyun DJ; Park S; Yoon J; Lim H; Choi YY; Kim MJ
    J Korean Med Sci; 2021 Mar; 36(12):e80. PubMed ID: 33783145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A qualitative study of the perceived benefits of participating in a spinal cord rehabilitation intervention in a low-middle income country.
    Shackleton C; Swartz L; Skowno P; Evans R; West S; Albertus Y; Derman W; Bantjes J
    Disabil Rehabil; 2023 Oct; ():1-7. PubMed ID: 37789608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.