These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36794588)

  • 1. Capacity for LDL (Low-Density Lipoprotein) Retention Predicts the Course of Atherogenesis in the Murine Aortic Arch.
    Lewis EA; Muñiz-Anquela R; Redondo-Angulo I; González-Cintado L; Labrador-Cantarero V; Bentzon JF
    Arterioscler Thromb Vasc Biol; 2023 May; 43(5):637-649. PubMed ID: 36794588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type 1 diabetes increases retention of low-density lipoprotein in the atherosclerosis-prone area of the murine aorta.
    Hagensen MK; Mortensen MB; Kjolby M; Stillits NL; Steffensen LB; Bentzon JF
    Atherosclerosis; 2017 Aug; 263():7-14. PubMed ID: 28550710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased retention of LDL from type 1 diabetic patients in atherosclerosis-prone areas of the murine arterial wall.
    Hagensen MK; Mortensen MB; Kjolby M; Palmfeldt J; Bentzon JF; Gregersen S
    Atherosclerosis; 2019 Jul; 286():156-162. PubMed ID: 30871723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influx, efflux, and accumulation of LDL in normal arterial areas and atherosclerotic lesions of white Carneau pigeons with naturally occurring and cholesterol-aggravated aortic atherosclerosis.
    Schwenke DC; St Clair RW
    Arterioscler Thromb; 1993 Sep; 13(9):1368-81. PubMed ID: 8364021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of low-density lipoprotein in atherosclerotic lesions of the mouse: evidence for a role of lipoprotein lipase.
    Gustafsson M; Levin M; Skålén K; Perman J; Fridén V; Jirholt P; Olofsson SO; Fazio S; Linton MF; Semenkovich CF; Olivecrona G; Borén J
    Circ Res; 2007 Oct; 101(8):777-83. PubMed ID: 17761930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of 125I-tyramine cellobiose-labeled low density lipoprotein is greater in the atherosclerosis-susceptible region of White Carneau pigeon aorta and further enhanced once atherosclerotic lesions develop.
    Schwenke DC; St Clair RW
    Arterioscler Thromb; 1992 Apr; 12(4):446-60. PubMed ID: 1558836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of aorta and pulmonary artery: II. LDL transport and metabolism correlate with susceptibility to atherosclerosis.
    Schwenke DC
    Circ Res; 1997 Sep; 81(3):346-54. PubMed ID: 9285636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of lipoprotein-glycosaminoglycan interactions in the atherosclerotic rabbit aorta in vivo.
    Srinivasan SR; Vijayagopal P; Dalferes ER; Abbate B; Radhakrishnamurthy B; Berenson GS
    Biochim Biophys Acta; 1984 Apr; 793(2):157-68. PubMed ID: 6712964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epac1 (Exchange Protein Directly Activated by cAMP 1) Upregulates LOX-1 (Oxidized Low-Density Lipoprotein Receptor 1) to Promote Foam Cell Formation and Atherosclerosis Development.
    Robichaux WG; Mei FC; Yang W; Wang H; Sun H; Zhou Z; Milewicz DM; Teng BB; Cheng X
    Arterioscler Thromb Vasc Biol; 2020 Dec; 40(12):e322-e335. PubMed ID: 33054390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered metabolism of LDL in the arterial wall precedes atherosclerosis regression.
    Bartels ED; Christoffersen C; Lindholm MW; Nielsen LB
    Circ Res; 2015 Nov; 117(11):933-42. PubMed ID: 26358193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch.
    Liu X; Pu F; Fan Y; Deng X; Li D; Li S
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H163-70. PubMed ID: 19429823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prominent lectin-like oxidized low density lipoprotein (LDL) receptor-1 (LOX-1) expression in atherosclerotic lesions is associated with tissue factor expression and apoptosis in hypercholesterolemic rabbits.
    Kuge Y; Kume N; Ishino S; Takai N; Ogawa Y; Mukai T; Minami M; Shiomi M; Saji H
    Biol Pharm Bull; 2008 Aug; 31(8):1475-82. PubMed ID: 18670075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries.
    Schwenke DC; Carew TE
    Arteriosclerosis; 1989; 9(6):908-18. PubMed ID: 2590068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disturbed Laminar Blood Flow Vastly Augments Lipoprotein Retention in the Artery Wall: A Key Mechanism Distinguishing Susceptible From Resistant Sites.
    Steffensen LB; Mortensen MB; Kjolby M; Hagensen MK; Oxvig C; Bentzon JF
    Arterioscler Thromb Vasc Biol; 2015 Sep; 35(9):1928-35. PubMed ID: 26183617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression.
    Devlin CM; Leventhal AR; Kuriakose G; Schuchman EH; Williams KJ; Tabas I
    Arterioscler Thromb Vasc Biol; 2008 Oct; 28(10):1723-30. PubMed ID: 18669882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of the transport pathways of low density lipoproteins across the endothelial cells in the branched regions of rat arteries.
    Kao CH; Chen JK; Kuo JS; Yang VC
    Atherosclerosis; 1995 Jul; 116(1):27-41. PubMed ID: 7488331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates Atherosclerosis in Mice.
    Westerterp M; Tsuchiya K; Tattersall IW; Fotakis P; Bochem AE; Molusky MM; Ntonga V; Abramowicz S; Parks JS; Welch CL; Kitajewski J; Accili D; Tall AR
    Arterioscler Thromb Vasc Biol; 2016 Jul; 36(7):1328-37. PubMed ID: 27199450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation Impacts Early Atherosclerosis by Suppressing Intimal LDL Accumulation.
    Ikeda J; Scipione CA; Hyduk SJ; Althagafi MG; Atif J; Dick SA; Rajora M; Jang E; Emoto T; Murakami J; Ikeda N; Ibrahim HM; Polenz CK; Gao X; Tai K; Jongstra-Bilen J; Nakashima R; Epelman S; Robbins CS; Zheng G; Lee WL; MacParland SA; Cybulsky MI
    Circ Res; 2021 Feb; 128(4):530-543. PubMed ID: 33397122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased atherosclerotic lesion formation and vascular leukocyte accumulation in renal impairment are mediated by interleukin-17A.
    Ge S; Hertel B; Koltsova EK; Sörensen-Zender I; Kielstein JT; Ley K; Haller H; von Vietinghoff S
    Circ Res; 2013 Sep; 113(8):965-74. PubMed ID: 23908345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased degradation of lipoprotein(a) in atherosclerotic compared with nonlesioned aortic intima-inner media of rabbits: in vivo evidence that lipoprotein(a) may contribute to foam cell formation.
    Nielsen LB; Juul K; Nordestgaard BG
    Arterioscler Thromb Vasc Biol; 1998 Apr; 18(4):641-9. PubMed ID: 9555871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.