These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36794888)

  • 1. Zinc solubilizing Bacillus sp (SS9) and Enterobacter sp (SS7) promote mung bean (Vigna radiata L.) growth, nutrient uptake and physiological profiles.
    Shreya D; Amaresan N; Supriya NR
    Lett Appl Microbiol; 2023 Feb; 76(2):. PubMed ID: 36794888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt-tolerant bacteria enhance the growth of mung bean (
    Desai S; Mistry J; Shah F; Chandwani S; Amaresan N; Supriya NR
    Int J Phytoremediation; 2023; 25(1):66-73. PubMed ID: 35382669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth improvement of wheat (
    Ali M; Ahmed I; Tariq H; Abbas S; Zia MH; Mumtaz A; Sharif M
    Front Plant Sci; 2023; 14():1140454. PubMed ID: 37251763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of zinc solubilization potential of arsenic tolerant Burkholderia spp. isolated from rice rhizospheric soil.
    Bhakat K; Chakraborty A; Islam E
    World J Microbiol Biotechnol; 2021 Feb; 37(3):39. PubMed ID: 33544268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn solubilizing bacteria (ZSB) mitigate toxicity of silver and Titanium dioxide nanoparticles in Mung bean by increasing photosynthetic pigment content.
    Haroon M; Khan ST; Malik A
    J Gen Appl Microbiol; 2024 Jun; ():. PubMed ID: 38925981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant growth promoting activities and effect of fermented panchagavya isolate Klebsiella sp. PG-64 on Vigna radiata.
    Gohil RB; Raval VH; Panchal RR; Rajput KN
    World J Microbiol Biotechnol; 2022 Dec; 39(2):41. PubMed ID: 36512151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous application of antagonistic Streptomyces sp. SND-2 triggers defense response in Vigna radiata (L.) R. Wilczek (mung bean) against anthracnose infection.
    Basavarajappa DS; Kumar RS; Nagaraja SK; Perumal K; Nayaka S
    Environ Res; 2023 Aug; 231(Pt 3):116212. PubMed ID: 37244496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.
    Ma Y; Oliveira RS; Wu L; Luo Y; Rajkumar M; Rocha I; Freitas H
    J Toxicol Environ Health A; 2015; 78(13-14):931-44. PubMed ID: 26167758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation-based antagonistic endophyte Amycolatopsis sp. SND-1 triggers defense response in Vigna radiata (L.) R. Wilczek. (Mung bean) against Cercospora leaf spot disease.
    Basavarajappa DS; Kumar RS; Nayaka S
    Arch Microbiol; 2023 Feb; 205(2):77. PubMed ID: 36720740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize.
    Mumtaz MZ; Ahmad M; Jamil M; Hussain T
    Microbiol Res; 2017 Sep; 202():51-60. PubMed ID: 28647123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii.
    Das J; Sarkar P
    Sci Total Environ; 2018 May; 624():1106-1118. PubMed ID: 29625525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylobacterium spp. mitigation of UV stress in mung bean (Vigna radiata L.).
    Gamit HA; Amaresan N
    Photochem Photobiol Sci; 2023 Dec; 22(12):2839-2850. PubMed ID: 37838625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of zinc-resistant Lysinibacillus species inoculation on growth, physiological properties, and zinc uptake in maize (Zea mays L.).
    Jinal HN; Gopi K; Kumar K; Amaresan N
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):6540-6548. PubMed ID: 32997250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing zinc levels in
    Karnwal A
    BioTechnologia (Pozn); 2023; 104(2):157-169. PubMed ID: 37427026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated use of phosphate-solubilizing Bacillus subtilis strain IA6 and zinc-solubilizing Bacillus sp. strain IA16: a promising approach for improving cotton growth.
    Ahmad I; Ahmad M; Hussain A; Jamil M
    Folia Microbiol (Praha); 2021 Feb; 66(1):115-125. PubMed ID: 33099750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and molecular investigation of non-rhizobial endophytic bacteria as potential biofertilisers.
    Bakhtiyarifar M; Enayatizamir N; Mehdi Khanlou K
    Arch Microbiol; 2021 Mar; 203(2):513-521. PubMed ID: 32965526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth.
    Deepa CK; Dastager SG; Pandey A
    World J Microbiol Biotechnol; 2010 Jul; 26(7):1233-40. PubMed ID: 24026928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Zinc Transporter Genes in Rice as Influenced by Zinc-Solubilizing Enterobacter cloacae Strain ZSB14.
    Krithika S; Balachandar D
    Front Plant Sci; 2016; 7():446. PubMed ID: 27092162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteria isolated from e-waste soil enhance plant growth and mobilize trace metals in e-waste-amended soils.
    Patel B; Jinal HN; Chavan SM; Paul D; Amaresan N
    Int J Phytoremediation; 2023; 25(7):900-906. PubMed ID: 36062907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.).
    Mukhtar S; Shahid I; Mehnaz S; Malik KA
    Microbiol Res; 2017 Dec; 205():107-117. PubMed ID: 28942836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.