BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36794890)

  • 1. Plasmonic Properties of Individual Gallium Nanoparticles.
    Horák M; Čalkovský V; Mach J; Křápek V; Šikola T
    J Phys Chem Lett; 2023 Mar; 14(8):2012-2019. PubMed ID: 36794890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.
    Knight MW; Coenen T; Yang Y; Brenny BJ; Losurdo M; Brown AS; Everitt HO; Polman A
    ACS Nano; 2015 Feb; 9(2):2049-60. PubMed ID: 25629392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tents, Chairs, Tacos, Kites, and Rods: Shapes and Plasmonic Properties of Singly Twinned Magnesium Nanoparticles.
    Asselin J; Boukouvala C; Hopper ER; Ramasse QM; Biggins JS; Ringe E
    ACS Nano; 2020 May; 14(5):5968-5980. PubMed ID: 32286792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Spatial Resolution Mapping of Localized Surface Plasmon Resonances in Single Gallium Nanoparticles.
    de la Mata M; Catalán-Gómez S; Nucciarelli F; Pau JL; Molina SI
    Small; 2019 Oct; 15(43):e1902920. PubMed ID: 31496053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Plasmon Tunability of Core-Shell Au@Mo
    Sciortino F; Cretu O; Karanikolas V; Grasset F; Cordier S; Ariga K; Kuroda T; Kimoto K
    J Phys Chem Lett; 2022 Mar; 13(9):2150-2157. PubMed ID: 35226485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Optical Properties of Discrete Dendritic Pt Nanoparticles on Colloidal Au Nanoprisms.
    Leary RK; Kumar A; Straney PJ; Collins SM; Yazdi S; Dunin-Borkowski RE; Midgley PA; Millstone JE; Ringe E
    J Phys Chem C Nanomater Interfaces; 2016 Sep; 120(37):20843-20851. PubMed ID: 27688821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic coupling in closed-packed ordered gallium nanoparticles.
    Catalán-Gómez S; Bran C; Vázquez M; Vázquez L; Pau JL; Redondo-Cubero A
    Sci Rep; 2020 Mar; 10(1):4187. PubMed ID: 32144349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells.
    Zhang Y; Cai B; Jia B
    Nanomaterials (Basel); 2016 May; 6(6):. PubMed ID: 28335223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate.
    D'Antonio P; Inchingolo AV; Perna G; Capozzi V; Stomeo T; De Vittorio M; Magno G; Grande M; Petruzzelli V; D'Orazio A
    Nanotechnology; 2012 Nov; 23(45):455709. PubMed ID: 23089681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum plasmon resonances of individual metallic nanoparticles.
    Scholl JA; Koh AL; Dionne JA
    Nature; 2012 Mar; 483(7390):421-7. PubMed ID: 22437611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperaturas.
    Catalán-Gómez S; Redondo-Cubero A; Palomares FJ; Nucciarelli F; Pau JL
    Nanotechnology; 2017 Oct; 28(40):405705. PubMed ID: 28787277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic polymers unraveled through single particle spectroscopy.
    Slaughter LS; Wang LY; Willingham BA; Olson JM; Swanglap P; Dominguez-Medina S; Link S
    Nanoscale; 2014 Oct; 6(19):11451-61. PubMed ID: 25155111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.
    Li CH; Jamison AC; Rittikulsittichai S; Lee TC; Lee TR
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19943-50. PubMed ID: 25321928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles.
    Ringe E; Langille MR; Sohn K; Zhang J; Huang J; Mirkin CA; Van Duyne RP; Marks LD
    J Phys Chem Lett; 2012 Jun; 3(11):1479-83. PubMed ID: 26285624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.