These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36794900)

  • 1. N
    Garcias-Morales D; Palomar VM; Charlot F; Nogué F; Covarrubias AA; Reyes JL
    Plant J; 2023 Apr; 114(1):7-22. PubMed ID: 36794900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SEC6 exocyst subunit contributes to multiple steps of growth and development of Physcomitrella (Physcomitrium patens).
    Brejšková L; Hála M; Rawat A; Soukupová H; Cvrčková F; Charlot F; Nogué F; Haluška S; Žárský V
    Plant J; 2021 May; 106(3):831-843. PubMed ID: 33599020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Regulation of the 2D to 3D Growth Transition in the Moss Physcomitrella patens.
    Moody LA; Kelly S; Rabbinowitsch E; Langdale JA
    Curr Biol; 2018 Feb; 28(3):473-478.e5. PubMed ID: 29395927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physcomitrium patens CAD1 has distinct roles in growth and resistance to biotic stress.
    Jiang S; Tian X; Huang X; Xin J; Yan H
    BMC Plant Biol; 2022 Nov; 22(1):518. PubMed ID: 36344936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NO GAMETOPHORES 2 Is a Novel Regulator of the 2D to 3D Growth Transition in the Moss Physcomitrella patens.
    Moody LA; Kelly S; Clayton R; Weeks Z; Emms DM; Langdale JA
    Curr Biol; 2021 Feb; 31(3):555-563.e4. PubMed ID: 33242390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fundamental developmental transition in Physcomitrium patens is regulated by evolutionarily conserved mechanisms.
    Jaeger R; Moody LA
    Evol Dev; 2021 May; 23(3):123-136. PubMed ID: 33822471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution.
    Nishiyama T; Fujita T; Shin-I T; Seki M; Nishide H; Uchiyama I; Kamiya A; Carninci P; Hayashizaki Y; Shinozaki K; Kohara Y; Hasebe M
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):8007-12. PubMed ID: 12808149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 2D to 3D growth transition in the moss Physcomitrella patens.
    Moody LA
    Curr Opin Plant Biol; 2019 Feb; 47():88-95. PubMed ID: 30399606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High gene space divergence contrasts with frozen vegetative architecture in the moss family Funariaceae.
    Rahmatpour N; Perera NV; Singh V; Wegrzyn JL; Goffinet B
    Mol Phylogenet Evol; 2021 Jan; 154():106965. PubMed ID: 32956800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens.
    Hata Y; Naramoto S; Kyozuka J
    J Plant Res; 2019 Sep; 132(5):617-627. PubMed ID: 31432295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy modulates growth and development in the moss
    Pettinari G; Finello J; Plaza Rojas M; Liberatore F; Robert G; Otaiza-González S; Velez P; Theumer M; Agudelo-Romero P; Enet A; González C; Lascano R; Saavedra L
    Front Plant Sci; 2022; 13():1052358. PubMed ID: 36600927
    [No Abstract]   [Full Text] [Related]  

  • 12. Geometric cues forecast the switch from two- to three-dimensional growth in Physcomitrella patens.
    Tang H; Duijts K; Bezanilla M; Scheres B; Vermeer JEM; Willemsen V
    New Phytol; 2020 Mar; 225(5):1945-1955. PubMed ID: 31639220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unravelling 3D growth in the moss Physcomitrium patens.
    Moody LA
    Essays Biochem; 2022 Dec; 66(6):769-779. PubMed ID: 36342774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-specific transcriptomic analyses of three-dimensional shoot development in the moss Physcomitrella patens.
    Frank MH; Scanlon MJ
    Plant J; 2015 Aug; 83(4):743-51. PubMed ID: 26123849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens.
    Aoyama T; Hiwatashi Y; Shigyo M; Kofuji R; Kubo M; Ito M; Hasebe M
    Development; 2012 Sep; 139(17):3120-9. PubMed ID: 22833122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens.
    Rensing SA; Fritzowsky D; Lang D; Reski R
    BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two atypical ANGUSTIFOLIA without a plant-specific C-terminus regulate gametophore and sporophyte shapes in the moss Physcomitrium (Physcomitrella) patens.
    Takechi K; Nagase H; Furuya T; Hattori K; Sato Y; Miyajima K; Higuchi T; Matsuda R; Takio S; Tsukaya H; Takano H
    Plant J; 2021 Mar; 105(5):1390-1399. PubMed ID: 33280196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CELLULOSE SYNTHASE (CESA) gene essential for gametophore morphogenesis in the moss Physcomitrella patens.
    Goss CA; Brockmann DJ; Bushoven JT; Roberts AW
    Planta; 2012 Jun; 235(6):1355-67. PubMed ID: 22215046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea.
    Reboledo G; Agorio AD; Vignale L; Batista-García RA; Ponce De León I
    Plant Mol Biol; 2021 Nov; 107(4-5):365-385. PubMed ID: 33521880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Control of Gametophore Shoot Formation through Arginine in the Moss Physcomitrium patens.
    Kawade K; Horiguchi G; Hirose Y; Oikawa A; Hirai MY; Saito K; Fujita T; Tsukaya H
    Cell Rep; 2020 Sep; 32(10):108127. PubMed ID: 32905770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.