These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36795199)

  • 1. Ultra-small low-threshold mid-infrared plasmonic nanowire lasers based on n-doped GaN.
    Zheng J; Yan X; Zhang X; Ren X
    Discov Nano; 2023 Feb; 18(1):14. PubMed ID: 36795199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared hybrid plasmonic multiple quantum well nanowire lasers.
    Wang J; Wei W; Yan X; Zhang J; Zhang X; Ren X
    Opt Express; 2017 Apr; 25(8):9358-9367. PubMed ID: 28437898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Low-Threshold Miniaturized Plasmonic Nanowire Laser with High-Reflectivity Metal Mirrors.
    Zheng J; Yan X; Wei W; Wu C; Sibirev N; Zhang X; Ren X
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of a ZnO nanowire laser on a surface plasmon polariton.
    Yu Y; Liu B; Duan Z; Ma L; Zhong Y; Li M
    Appl Opt; 2022 Sep; 61(27):8115-8122. PubMed ID: 36255934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Simulation of Low-Threshold Miniaturized Single-Mode Nanowire Lasers Combined with a Photonic Crystal Microcavity and Asymmetric Distributed-Bragg-Reflector Mirrors.
    Wu C; Wei W; Yuan X; Zhang Y; Yan X; Zhang X
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-confined Propagating Exciton-Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs.
    Wang Y; Luo A; Zhu C; Li Z; Wu X
    Nanoscale Res Lett; 2022 Nov; 17(1):109. PubMed ID: 36399213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides.
    Zhang S; Xu H
    ACS Nano; 2012 Sep; 6(9):8128-35. PubMed ID: 22892010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires.
    Paul A; Zhen YR; Wang Y; Chang WS; Xia Y; Nordlander P; Link S
    Nano Lett; 2014 Jun; 14(6):3628-33. PubMed ID: 24798451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon lasers at deep subwavelength scale.
    Oulton RF; Sorger VJ; Zentgraf T; Ma RM; Gladden C; Dai L; Bartal G; Zhang X
    Nature; 2009 Oct; 461(7264):629-32. PubMed ID: 19718019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode properties in metallic and non-metallic plasmonic waveguides.
    Liu W; Chen Y; Hu X; Wen L; Jin L; Su Q; Chen Q
    Appl Opt; 2017 Jun; 56(16):4861-4867. PubMed ID: 29047626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface.
    Zhang Y; Wang J; Shen J; Man Z; Shi W; Min C; Yuan G; Zhu S; Urbach HP; Yuan X
    Nano Lett; 2014 Nov; 14(11):6430-6. PubMed ID: 25302534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of surface plasmon polaritons in low-loss highly metallic titanium nitride thin films in visible and infrared regimes.
    Gadalla MN; Chaudhary K; Zgrabik CM; Capasso F; Hu EL
    Opt Express; 2020 May; 28(10):14536-14546. PubMed ID: 32403492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Nanowire-Based Plasmonic Quantum Dot Laser.
    Ho J; Tatebayashi J; Sergent S; Fong CF; Ota Y; Iwamoto S; Arakawa Y
    Nano Lett; 2016 Apr; 16(4):2845-50. PubMed ID: 27030886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly doped InP as a low loss plasmonic material for mid-IR region.
    Panah ME; Takayama O; Morozov SV; Kudryavtsev KE; Semenova ES; Lavrinenko AV
    Opt Express; 2016 Dec; 24(25):29077-29088. PubMed ID: 27958572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-Based Cylindrical Plasmonic Waveguides in the Near-Infrared.
    Teng D; Tian Y; Hu X; Guan Z; Gao W; Li P; Fang H; Yan J; Wang Z; Wang K
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-Low-Loss Mid-Infrared Plasmonic Waveguides Based on Multilayer Graphene Metamaterials.
    Huang CC; Chang RJ; Cheng CW
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Nanowire-Rectangular Plasmonic Waveguide for Subwavelength Confinement at 1550 Nm.
    Wang Y; Liu H; Wang S; Cai M
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Channel Plasmon Nanowire Lasers with V-Groove Cavities.
    Wei W; Yan X; Shen B; Qin J; Zhang X
    Nanoscale Res Lett; 2018 Jul; 13(1):227. PubMed ID: 30066146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithographically Defined, Room Temperature Low Threshold Subwavelength Red-Emitting Hybrid Plasmonic Lasers.
    Liu N; Gocalinska A; Justice J; Gity F; Povey I; McCarthy B; Pemble M; Pelucchi E; Wei H; Silien C; Xu H; Corbett B
    Nano Lett; 2016 Dec; 16(12):7822-7828. PubMed ID: 27960504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons.
    Fernandez-Bravo A; Wang D; Barnard ES; Teitelboim A; Tajon C; Guan J; Schatz GC; Cohen BE; Chan EM; Schuck PJ; Odom TW
    Nat Mater; 2019 Nov; 18(11):1172-1176. PubMed ID: 31548631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.