These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 36795215)
21. Activation of Persulfate for Degrading Tetracycline Using the Leaching Residues of the Lead-Zinc Flotation Tailing. Wang J; Wen X; Jiang S; Chen T Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890733 [TBL] [Abstract][Full Text] [Related]
22. Removal of Sodium from Vanadium Tailings by Calcification Roasting in Reducing Atmosphere. Wang C; Guo Y; Wang S; Chen F; Yang L; Zheng Y Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769992 [TBL] [Abstract][Full Text] [Related]
23. Micromorphology and environmental behavior of oxide deposit layers in sulfide-rich tailings in Tongling, Anhui Province, China. Zheng L; Qiu Z; Tang Q; Li Y Environ Pollut; 2019 Aug; 251():484-492. PubMed ID: 31103008 [TBL] [Abstract][Full Text] [Related]
24. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings. Li Y; Sun Q; Zhan J; Yang Y; Wang D J Environ Manage; 2016 Jul; 177():153-60. PubMed ID: 27093236 [TBL] [Abstract][Full Text] [Related]
25. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon. Li M; Peng B; Chai L; Peng N; Yan H; Hou D J Hazard Mater; 2012 Oct; 237-238():323-30. PubMed ID: 22975260 [TBL] [Abstract][Full Text] [Related]
26. Extraction of lithium and aluminium from bauxite mine tailings by mixed acid treatment without roasting. Zhang Y; Zhang J; Wu L; Tan L; Xie F; Cheng J J Hazard Mater; 2021 Feb; 404(Pt B):124044. PubMed ID: 33059153 [TBL] [Abstract][Full Text] [Related]
27. Role of hypochlorite in the harmless treatment of cyanide tailings through slurry electrolysis. Chen Y; Song Y; Wu L; Dong P Environ Sci Pollut Res Int; 2022 Jun; 29(26):40178-40189. PubMed ID: 35122199 [TBL] [Abstract][Full Text] [Related]
28. A classical modelling of abandoned mine tailings' bioleaching by an autochthonous microbial culture. Medina-Díaz HL; Acosta I; Muñoz M; López Bellido FJ; Villaseñor J; Llanos J; Rodríguez L; Fernández-Morales FJ J Environ Manage; 2022 Dec; 323():116251. PubMed ID: 36261963 [TBL] [Abstract][Full Text] [Related]
29. Thermodynamics Evaluation and Verification of High-Sulfur Copper Slag Composite Agglomerate in Oxidation-Roasting-Separation-Leaching Process. Zhao K; Zhang X; Zhao W; Guo H; Zhang Q; Zhen C Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614379 [TBL] [Abstract][Full Text] [Related]
30. Study on the mechanism of Na Wang X; Bian X; Huang Y; Qiao S; Wu W Environ Res; 2024 Nov; 261():119655. PubMed ID: 39034022 [TBL] [Abstract][Full Text] [Related]
31. Bioleaching of tellurium from mine tailings by indigenous Acidithiobacillus ferrooxidans. Zhan Y; Shen X; Chen M; Yang K; Xie H Lett Appl Microbiol; 2022 Nov; 75(5):1076-1083. PubMed ID: 34586632 [TBL] [Abstract][Full Text] [Related]
32. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Chen D; Zhao L; Liu Y; Qi T; Wang J; Wang L J Hazard Mater; 2013 Jan; 244-245():588-95. PubMed ID: 23177244 [TBL] [Abstract][Full Text] [Related]
33. Unraveling the catalyzing behaviors of different iron species (Fe Zhen G; Lu X; Su L; Kobayashi T; Kumar G; Zhou T; Xu K; Li YY; Zhu X; Zhao Y Water Res; 2018 May; 134():101-114. PubMed ID: 29407644 [TBL] [Abstract][Full Text] [Related]
34. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. Gu F; Zhang Y; Peng Z; Su Z; Tang H; Tian W; Liang G; Lee J; Rao M; Li G; Jiang T J Hazard Mater; 2019 Jul; 374():83-91. PubMed ID: 30981016 [TBL] [Abstract][Full Text] [Related]
35. Recovery of zinc and extraction of calcium and sulfur from zinc-rich gypsum residue by selective reduction roasting combined with hydrolysis. Zhang T; Han J; Liu W; Jiao F; Jia W; Qin W J Environ Manage; 2023 Apr; 331():117256. PubMed ID: 36642046 [TBL] [Abstract][Full Text] [Related]
36. Efficient Recovery of Vanadium and Titanium from Domestic Titanomagnetite Concentrate Using Molten Salt Roasting and Water Leaching. Trinh HB; Kim S; Lee J; Oh S Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959513 [TBL] [Abstract][Full Text] [Related]
37. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant. Erust C; Akcil A Waste Manag Res; 2016 Jun; 34(6):527-33. PubMed ID: 26987736 [TBL] [Abstract][Full Text] [Related]
38. Effectiveness and mechanism of cyanide remediation from contaminated soils using thermally activated persulfate. Wei Y; Chen S; Ren T; Chen L; Liu Y; Gao J; Li Y Chemosphere; 2022 Apr; 292():133463. PubMed ID: 34974037 [TBL] [Abstract][Full Text] [Related]
39. Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution. Yuan S; Zhang Q; Yin H; Li Y J Hazard Mater; 2021 Feb; 404(Pt B):124067. PubMed ID: 33086183 [TBL] [Abstract][Full Text] [Related]