These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36796143)

  • 1. Practical considerations for the measurement of near-surface electrostatics based on solvent paramagnetic relaxation enhancements.
    Kaushik Rangadurai A; Toyama Y; Kay LE
    J Magn Reson; 2023 Apr; 349():107400. PubMed ID: 36796143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the per-residue surface electrostatic potential of CAPRIN1 along its phase-separation trajectory.
    Toyama Y; Rangadurai AK; Forman-Kay JD; Kay LE
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2210492119. PubMed ID: 36040869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems.
    Lenard AJ; Mulder FAA; Madl T
    Prog Nucl Magn Reson Spectrosc; 2022; 132-133():113-139. PubMed ID: 36496256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface electrostatics dictate RNA-binding protein CAPRIN1 condensate concentration and hydrodynamic properties.
    Toyama Y; Rangadurai AK; Forman-Kay JD; Kay LE
    J Biol Chem; 2023 Jan; 299(1):102776. PubMed ID: 36496075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurements of biomolecular electrostatics through experiments.
    Iwahara J; Pettitt BM; Yu B
    Curr Opin Struct Biol; 2023 Oct; 82():102680. PubMed ID: 37573815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of
    Toyama Y; Rangadurai AK; Kay LE
    J Biomol NMR; 2022 Aug; 76(4):137-152. PubMed ID: 36018482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory and Applications of Nitroxide-based Paramagnetic Cosolutes for Probing Intermolecular and Electrostatic Interactions on Protein Surfaces.
    Okuno Y; Schwieters CD; Yang Z; Clore GM
    J Am Chem Soc; 2022 Nov; 144(46):21371-21388. PubMed ID: 36346613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Electrostatics Investigated through Paramagnetic NMR for Nonpolar Groups.
    Yu B; Pletka CC; Iwahara J
    J Phys Chem B; 2022 Mar; 126(11):2196-2202. PubMed ID: 35266708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo determination of near-surface electrostatic potentials by NMR.
    Yu B; Pletka CC; Pettitt BM; Iwahara J
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring Local Electrostatic Potentials Around Nucleic Acids by Paramagnetic NMR Spectroscopy.
    Yu B; Wang X; Iwahara J
    J Phys Chem Lett; 2022 Oct; 13(42):10025-10029. PubMed ID: 36264151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the Components of the Electrostatic Potential of Proteins in Solution: Comparing Experiment and Theory.
    Chen C; Yu B; Yousefi R; Iwahara J; Pettitt BM
    J Phys Chem B; 2022 Jun; 126(24):4543-4554. PubMed ID: 35696448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermolecular Paramagnetic Relaxation Enhancement (PRE) Studies of Transient Complexes in Intrinsically Disordered Proteins.
    Janowska MK; Baum J
    Methods Mol Biol; 2016; 1345():45-53. PubMed ID: 26453204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of correlated conformational fluctuations in intrinsically disordered proteins through paramagnetic relaxation interference.
    Kurzbach D; Vanas A; Flamm AG; Tarnoczi N; Kontaxis G; Maltar-Strmečki N; Widder K; Hinderberger D; Konrat R
    Phys Chem Chem Phys; 2016 Feb; 18(8):5753-8. PubMed ID: 26411860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of an Intrinsically Disordered Region on Protein Domains Revealed by NMR-Based Electrostatic Potential Measurements.
    Yu B; Wang X; Tan KN; Iwahara J
    J Am Chem Soc; 2024 Jun; 146(22):14922-14926. PubMed ID: 38771003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Free Validation of Residual Dipolar Coupling and Paramagnetic Relaxation Enhancement Measurements of Disordered Proteins.
    Newby FN; De Simone A; Yagi-Utsumi M; Salvatella X; Dobson CM; Vendruscolo M
    Biochemistry; 2015 Nov; 54(46):6876-86. PubMed ID: 26479087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins.
    Hartlmüller C; Spreitzer E; Göbl C; Falsone F; Madl T
    J Biomol NMR; 2019 Jul; 73(6-7):305-317. PubMed ID: 31297688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR Characterization of Long-Range Contacts in Intrinsically Disordered Proteins from Paramagnetic Relaxation Enhancement in
    Mateos B; Konrat R; Pierattelli R; Felli IC
    Chembiochem; 2019 Feb; 20(3):335-339. PubMed ID: 30407719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational Ensemble of Disordered Proteins Probed by Solvent Paramagnetic Relaxation Enhancement (sPRE).
    Kooshapur H; Schwieters CD; Tjandra N
    Angew Chem Int Ed Engl; 2018 Oct; 57(41):13519-13522. PubMed ID: 30125451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paramagnetic Relaxation Enhancement for Detecting and Characterizing Self-Associations of Intrinsically Disordered Proteins.
    Johnson CN; Libich DS
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34633390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule.
    Iwahara J; Schwieters CD; Clore GM
    J Am Chem Soc; 2004 May; 126(18):5879-96. PubMed ID: 15125681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.