These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36796567)
21. Sequestration of Ni (II), Pb (II), and Zn (II) utilizing biogenic synthesized Fe Chander S; Yadav S; Gupta A; Luhach N Environ Sci Pollut Res Int; 2023 Nov; 30(53):114056-114077. PubMed ID: 37858026 [TBL] [Abstract][Full Text] [Related]
22. Cu/N doped lignin for highly selective efficient removal of As(v) from polluted water. Shi X; Wang C; Dong B; Kong S; Das R; Pan D; Guo Z Int J Biol Macromol; 2020 Oct; 161():147-154. PubMed ID: 32512105 [TBL] [Abstract][Full Text] [Related]
23. Mercury(II) and lead(II) ions removal using a novel thiol-rich hydrogel adsorbent; PHPAm/Fe Ebrahimpour E; Kazemi A Environ Sci Pollut Res Int; 2023 Jan; 30(5):13605-13623. PubMed ID: 36136188 [TBL] [Abstract][Full Text] [Related]
24. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. Mandal S; Calderon J; Marpu SB; Omary MA; Shi SQ J Contam Hydrol; 2021 Dec; 243():103869. PubMed ID: 34418820 [TBL] [Abstract][Full Text] [Related]
25. Efficient removal of heavy metals from melting effluent using multifunctional hydrogel adsorbents. Ma J; Zhang Y; Tang Y; Wei Y; Liu Y; Liu C Water Sci Technol; 2018 Sep; 78(3-4):982-990. PubMed ID: 30252675 [TBL] [Abstract][Full Text] [Related]
26. Constructing the vacancies and defects by hemp stem core alkali extraction residue biochar for highly effective removal of heavy metal ions. He T; Liu Z; Zhou W; Cheng X; He L; Guan Q; Zhou H J Environ Manage; 2022 Dec; 323():116256. PubMed ID: 36126592 [TBL] [Abstract][Full Text] [Related]
27. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Du Z; Zheng T; Wang P; Hao L; Wang Y Bioresour Technol; 2016 Feb; 201():41-9. PubMed ID: 26630582 [TBL] [Abstract][Full Text] [Related]
28. Magnetic silica nanoparticles adorned with a metal-organic framework; a novel nanosorbent for elimination of aqueous Pb ions contaminant. Rafie N; Khodadadi M; Zamani M; Zarepour A; Zarrabi A Environ Res; 2023 Jun; 226():115694. PubMed ID: 36933638 [TBL] [Abstract][Full Text] [Related]
29. Highly efficient removal of heavy metal ions by carboxymethyl cellulose-immobilized Fe Fan H; Ma X; Zhou S; Huang J; Liu Y; Liu Y Carbohydr Polym; 2019 Jun; 213():39-49. PubMed ID: 30879683 [TBL] [Abstract][Full Text] [Related]
30. Magnetic adsorbent developed with alkali-thermal pretreated biogas slurry solids for the removal of heavy metals: optimization, kinetic, and equilibrium study. Sasidharan R; Kumar A Environ Sci Pollut Res Int; 2022 Apr; 29(20):30217-30232. PubMed ID: 35000179 [TBL] [Abstract][Full Text] [Related]
31. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Nejadshafiee V; Islami MR Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():42-52. PubMed ID: 31029336 [TBL] [Abstract][Full Text] [Related]
32. Novel magnetic polysaccharide/graphene oxide @Fe Wu Z; Deng W; Zhou W; Luo J Carbohydr Polym; 2019 Jul; 216():119-128. PubMed ID: 31047048 [TBL] [Abstract][Full Text] [Related]
33. Thermodynamic valorisation of lignocellulosic biomass green sorbents for toxic pollutants removal. Šehović E; Memić M; Sulejmanović J; Hameed M; Begić S; Ljubijankić N; Selović A; Ghfar AA; Sher F Chemosphere; 2022 Nov; 307(Pt 1):135737. PubMed ID: 35850218 [TBL] [Abstract][Full Text] [Related]
34. Facile synthesis and characterization of polypyrrole - iron oxide - seaweed (PPy-Fe Sarojini G; Venkateshbabu S; Rajasimman M Chemosphere; 2021 Sep; 278():130400. PubMed ID: 33819882 [TBL] [Abstract][Full Text] [Related]
35. Magnetic layered double hydroxide composite as new adsorbent for efficient Cu (II) and Ni (II) ions removal from aqueous samples: Adsorption mechanism investigation and parameters optimization. Taheri S; Sedghi-Asl M; Ghaedi M; Mohammadi-Asl Z; Rahmanian M J Environ Manage; 2023 Mar; 329():117009. PubMed ID: 36535146 [TBL] [Abstract][Full Text] [Related]
36. Self-propelled nanomotors based on hierarchical metal-organic framework composites for the removal of heavy metal ions. Yang W; Qiang Y; Du M; Cao Y; Wang Y; Zhang X; Yue T; Huang J; Li Z J Hazard Mater; 2022 Aug; 435():128967. PubMed ID: 35483266 [TBL] [Abstract][Full Text] [Related]
37. Removed heavy metal ions from wastewater reuse for chemiluminescence: Successive application of lignin-based composite hydrogels. Jiao GJ; Ma J; Li Y; Jin D; Zhou J; Sun R J Hazard Mater; 2022 Jan; 421():126722. PubMed ID: 34332480 [TBL] [Abstract][Full Text] [Related]
38. Efficient removal of heavy metal ions from aqueous media by unmodified and modified nanodiamonds. Ahmadijokani F; Molavi H; Peyghambari A; Shojaei A; Rezakazemi M; Aminabhavi TM; Arjmand M J Environ Manage; 2022 Aug; 316():115214. PubMed ID: 35594821 [TBL] [Abstract][Full Text] [Related]
39. Mild Hydrothermal Synthesis of 11Å-TA from Alumina Extracted Coal Fly Ash and Its Application in Water Adsorption of Heavy Metal Ions (Cu(II) and Pb(II)). Yang J; Sun H; Peng T; Zeng L; Zhou X Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055438 [TBL] [Abstract][Full Text] [Related]
40. Effect of ternary polymer composites of macroporous adsorbents on adsorption properties for heavy metal removal from aqueous solution. Charoenchai M; Tangbunsuk S Environ Sci Pollut Res Int; 2022 Nov; 29(55):84006-84018. PubMed ID: 35776300 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]