These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36796658)
1. Enhanced blend uniformity and flowability of low drug loaded fine API blends via dry coating: The effect of mixing time and excipient size. Kim SS; Castillo C; Cheikhali M; Darweesh H; Kossor C; Davé RN Int J Pharm; 2023 Mar; 635():122722. PubMed ID: 36796658 [TBL] [Abstract][Full Text] [Related]
2. Reduced Fine API Agglomeration After Dry Coating for Enhanced Blend Uniformity and Processability of Low Drug Loaded Blends. Kim SS; Castillo C; Sayedahmed M; Davé RN Pharm Res; 2022 Dec; 39(12):3155-3174. PubMed ID: 35882741 [TBL] [Abstract][Full Text] [Related]
3. Impact of Silica Dry Coprocessing with API and Blend Mixing Time on Blend Flowability and Drug Content Uniformity. Kim SS; Seetahal A; Amores N; Kossor C; Davé RN J Pharm Sci; 2023 Aug; 112(8):2124-2136. PubMed ID: 37230252 [TBL] [Abstract][Full Text] [Related]
4. Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating. Kunnath K; Huang Z; Chen L; Zheng K; Davé R Int J Pharm; 2018 May; 543(1-2):288-299. PubMed ID: 29625168 [TBL] [Abstract][Full Text] [Related]
5. Facilitating direct compaction tableting of fine cohesive APIs using dry coated fine excipients: Effect of the excipient size and amount of coated silica. Lin Z; Cabello B; Kossor C; Davé R Int J Pharm; 2024 Jul; 660():124359. PubMed ID: 38901539 [TBL] [Abstract][Full Text] [Related]
6. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating. Huang Z; Scicolone JV; Han X; Davé RN Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016 [TBL] [Abstract][Full Text] [Related]
8. Impact of dry coating lactose as a brittle excipient on multi-component blend processability. Lin Z; Cabello B; Davé RN Int J Pharm; 2024 Mar; 653():123921. PubMed ID: 38382769 [TBL] [Abstract][Full Text] [Related]
9. Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs. Chen L; He Z; Kunnath KT; Fan S; Wei Y; Ding X; Zheng K; Davé RN Int J Pharm; 2019 Feb; 557():354-365. PubMed ID: 30597273 [TBL] [Abstract][Full Text] [Related]
10. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug. Alyami H; Dahmash E; Bowen J; Mohammed AR PLoS One; 2017; 12(6):e0178772. PubMed ID: 28609454 [TBL] [Abstract][Full Text] [Related]
11. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading. Han X; Ghoroi C; Davé R Int J Pharm; 2013 Feb; 442(1-2):74-85. PubMed ID: 22921376 [TBL] [Abstract][Full Text] [Related]
12. Fine grade engineered microcrystalline cellulose excipients for direct compaction: Assessing suitability of different dry coating processes. Chen L; He Z; Kunnath K; Zheng K; Kim S; Davé RN Eur J Pharm Sci; 2020 Aug; 151():105408. PubMed ID: 32502519 [TBL] [Abstract][Full Text] [Related]
13. Decoding Fine API Agglomeration as a Key Indicator of Powder Flowability and Dissolution: Impact of Particle Engineering. Kim S; Cheikhali M; Davé RN Pharm Res; 2022 Dec; 39(12):3079-3098. PubMed ID: 35698012 [TBL] [Abstract][Full Text] [Related]
14. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose. Chen L; Ding X; He Z; Huang Z; Kunnath KT; Zheng K; Davé RN Int J Pharm; 2018 Jan; 536(1):127-137. PubMed ID: 29191481 [TBL] [Abstract][Full Text] [Related]
15. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression. Capece M; Huang Z; Davé R J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the origins of content non-uniformity in high-shear wet granulation. Oka S; Smrčka D; Kataria A; Emady H; Muzzio F; Štěpánek F; Ramachandran R Int J Pharm; 2017 Aug; 528(1-2):578-585. PubMed ID: 28627457 [TBL] [Abstract][Full Text] [Related]
17. Selection of Silica Type and Amount for Flowability Enhancements via Dry Coating: Contact Mechanics Based Predictive Approach. Kunnath KT; Tripathi S; Kim SS; Chen L; Zheng K; Davé RN Pharm Res; 2023 Dec; 40(12):2917-2933. PubMed ID: 37468827 [TBL] [Abstract][Full Text] [Related]
18. Assessment of Resonant Acoustic Mixing for Low-Dose Pharmaceutical Powder Blends. Gupta S; Pu YE; Li M; Li Z; Osorio JG AAPS PharmSciTech; 2022 Apr; 23(5):126. PubMed ID: 35474151 [TBL] [Abstract][Full Text] [Related]
19. Assessment of powder blend uniformity: Comparison of real-time NIR blend monitoring with stratified sampling in combination with HPLC and at-line NIR Chemical Imaging. Bakri B; Weimer M; Hauck G; Reich G Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):78-89. PubMed ID: 26455421 [TBL] [Abstract][Full Text] [Related]
20. Single-step Coprocessing of Cohesive Powder via Mechanical Dry Coating for Direct Tablet Compression. Qu L; Stewart PJ; Hapgood KP; Lakio S; Morton DAV; Zhou QT J Pharm Sci; 2017 Jan; 106(1):159-167. PubMed ID: 27665128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]