These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36796893)

  • 1. Heat transfer analysis for tissue with surface heat flux based on the non-linearized form of the three-phase-lag model.
    Liu KC; Leu JS
    J Therm Biol; 2023 Feb; 112():103436. PubMed ID: 36796893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractional Order Two-Temperature Dual-Phase-Lag Thermoelasticity with Variable Thermal Conductivity.
    Mondal S; Mallik SH; Kanoria M
    Int Sch Res Notices; 2014; 2014():646049. PubMed ID: 27419210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Non-Fourier Bioheat Transfer Model for Cryosurgery of Tumor Tissue with Minimum Collateral Damage.
    Barman C; Rath P; Bhattacharya A
    Comput Methods Programs Biomed; 2021 Mar; 200():105857. PubMed ID: 33280936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The exact analytical solution of the dual-phase-lag two-temperature bioheat transfer of a skin tissue subjected to constant heat flux.
    Youssef HM; Alghamdi NA
    Sci Rep; 2020 Sep; 10(1):15946. PubMed ID: 32994496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-heat response of skin tissue based on three-phase-lag model.
    Zhang Q; Sun Y; Yang J
    Sci Rep; 2020 Oct; 10(1):16421. PubMed ID: 33009474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study on constant and sinusoidal heating of skin tissue using radial basis functions.
    Verma R; Kumar S
    Comput Biol Med; 2020 Jun; 121():103808. PubMed ID: 32568681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.
    Ezzat MA; El-Bary AA; Al-Sowayan NS
    Anim Sci J; 2016 Oct; 87(10):1304-1311. PubMed ID: 26800333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical and numerical analysis of the dual-pulse lag heat transfer in a three-dimensional tissue subjected to a moving multi-point laser beam.
    Partovi B; Ahmadikia H; Mosharaf-Dehkordi M
    J Therm Biol; 2023 Feb; 112():103431. PubMed ID: 36796889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface.
    Shih TC; Yuan P; Lin WL; Kou HS
    Med Eng Phys; 2007 Nov; 29(9):946-53. PubMed ID: 17137825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of non-Fourier heat conduction in a biolayer spherical living tissue during hyperthermia.
    Mohajer M; Ayani MB; Tabrizi HB
    J Therm Biol; 2016 Dec; 62(Pt B):181-188. PubMed ID: 27888932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual phase lag bio-heat transfer during cryosurgery of lung cancer: Comparison of three heat transfer models.
    Kumar A; Kumar S; Katiyar VK; Telles S
    J Therm Biol; 2017 Oct; 69():228-237. PubMed ID: 29037387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation.
    Zhou J; Chen JK; Zhang Y
    Comput Biol Med; 2009 Mar; 39(3):286-93. PubMed ID: 19217088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parametric study of thermal therapy of skin tissue.
    Nóbrega S; Coelho PJ
    J Therm Biol; 2017 Jan; 63():92-103. PubMed ID: 28010820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of non-Fourier thermal response of lung tissue based on experimental data with application in laser therapy.
    Eltejaei I; Balavand M; Mojra A
    Comput Methods Programs Biomed; 2021 Feb; 199():105905. PubMed ID: 33360608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of local non-equilibrium heat transfer in layered spherical tissue during magnetic hyperthermia.
    Liu KC; Yang YC
    Comput Methods Biomech Biomed Engin; 2020 Oct; 23(13):968-980. PubMed ID: 32530754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.
    Kumar D; Kumar P; Rai KN
    Math Biosci; 2017 Nov; 293():56-63. PubMed ID: 28859910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of different heat transfer models on therapeutic temperature prediction and heat-induced damage during magnetic hyperthermia.
    Tang Y; Wang Y; Flesch RCC; Jin T
    J Therm Biol; 2023 Dec; 118():103747. PubMed ID: 38000145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study on 2D three-phase lag bioheat model during cryosurgery using RBF meshfree method.
    Verma R; Kumar S
    J Therm Biol; 2023 May; 114():103575. PubMed ID: 37344016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy.
    Kumar D; Rai KN
    J Therm Biol; 2017 Jul; 67():49-58. PubMed ID: 28558937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin tissue responses to transient heating with memory-dependent derivative.
    Bawadekji A; Amin MM; Ezzat MA
    J Therm Biol; 2019 Dec; 86():102427. PubMed ID: 31789241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.