These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36796927)
1. An assessment of the validity and reliability of the P022-P version of e-Celsius core temperature capsules. Service TW; Junker K; Service B; Coehoorn CJ; Harrington M; Martin S; Stuart-Hill LA J Therm Biol; 2023 Feb; 112():103486. PubMed ID: 36796927 [TBL] [Abstract][Full Text] [Related]
2. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems. Bongers CCWG; Daanen HAM; Bogerd CP; Hopman MTE; Eijsvogels TMH Med Sci Sports Exerc; 2018 Jan; 50(1):169-175. PubMed ID: 28816921 [TBL] [Abstract][Full Text] [Related]
3. Validity and reliability of the myTemp ingestible temperature capsule. Bongers CCWG; Hopman MTE; Eijsvogels TMH J Sci Med Sport; 2018 Mar; 21(3):322-326. PubMed ID: 28645495 [TBL] [Abstract][Full Text] [Related]
4. Validation of e-Celsius gastrointestinal telemetry system as measure of core temperature. Koumar OC; Beaufils R; Chesneau C; Normand H; Bessot N J Therm Biol; 2023 Feb; 112():103471. PubMed ID: 36796916 [TBL] [Abstract][Full Text] [Related]
5. The validity of temperature-sensitive ingestible capsules for measuring core body temperature in laboratory protocols. Darwent D; Zhou X; van den Heuvel C; Sargent C; Roach GD Chronobiol Int; 2011 Oct; 28(8):719-26. PubMed ID: 21823816 [TBL] [Abstract][Full Text] [Related]
6. Issues in Continuous 24-h Core Body Temperature Monitoring in Humans Using an Ingestible Capsule Telemetric Sensor. Monnard CR; Fares EJ; Calonne J; Miles-Chan JL; Montani JP; Durrer D; Schutz Y; Dulloo AG Front Endocrinol (Lausanne); 2017; 8():130. PubMed ID: 28659868 [TBL] [Abstract][Full Text] [Related]
7. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression. Hunt AP; Bach AJE; Borg DN; Costello JT; Stewart IB Front Physiol; 2017; 8():260. PubMed ID: 28496414 [TBL] [Abstract][Full Text] [Related]
8. Determining the accuracy of zero-flux and ingestible thermometers in the peri-operative setting. Jack JM; Ellicott H; Jones CI; Bremner SA; Densham I; Harper CM J Clin Monit Comput; 2019 Dec; 33(6):1113-1118. PubMed ID: 30623279 [TBL] [Abstract][Full Text] [Related]
9. Validity and reliability of temperature measurement by heat flow thermistors, flexible thermocouple probes and thermistors in a stirred water bath. Versey NG; Gore CJ; Halson SL; Plowman JS; Dawson BT Physiol Meas; 2011 Sep; 32(9):1417-24. PubMed ID: 21788687 [TBL] [Abstract][Full Text] [Related]
10. Normal gastrointestinal temperature values measured through ingestible capsules technology: a systematic review. Martins Januário W; Prata ERBA; Natali AJ; Prímola-Gomes TN J Med Eng Technol; 2023 Nov; 47(8):389-395. PubMed ID: 38780358 [TBL] [Abstract][Full Text] [Related]
11. Validation of an ingestible temperature data logging and telemetry system during exercise in the heat. Travers GJ; Nichols DS; Farooq A; Racinais S; Périard JD Temperature (Austin); 2016; 3(2):208-219. PubMed ID: 27857951 [No Abstract] [Full Text] [Related]
12. Agreement of telemetric temperature capsules ingested 48 hours apart. Mayer TA; Caldwell AR; O'Brien C J Therm Biol; 2022 Aug; 108():103271. PubMed ID: 36031203 [TBL] [Abstract][Full Text] [Related]
13. Body surface and body core temperatures and their associations to haemodynamics: The BOSTON-I-study: Validation of a thermodilution catheter (PiCCO) to measure body core temperature and comparison of body surface temperatures to thermodilutionderived Cardiac Index. Huber W; Wiedemann C; Lahmer T; Hoellthaler J; Einwächter H; Treiber M; Schlag C; Schmid R; Heilmaier M Math Biosci Eng; 2019 Nov; 17(2):1132-1146. PubMed ID: 32233573 [TBL] [Abstract][Full Text] [Related]
14. Validity and reliability of devices that assess body temperature during indoor exercise in the heat. Ganio MS; Brown CM; Casa DJ; Becker SM; Yeargin SW; McDermott BP; Boots LM; Boyd PW; Armstrong LE; Maresh CM J Athl Train; 2009; 44(2):124-35. PubMed ID: 19295956 [TBL] [Abstract][Full Text] [Related]
15. An Innovative Wearable Device For Monitoring Continuous Body Surface Temperature (HEARThermo): Instrument Validation Study. Yeh CY; Chung YT; Chuang KT; Shu YC; Kao HY; Chen PL; Ko WC; Ko NY JMIR Mhealth Uhealth; 2021 Feb; 9(2):e19210. PubMed ID: 33565990 [TBL] [Abstract][Full Text] [Related]
16. Accuracy of Tympanic Temperature Measurement in Firefighters Completing a Simulated Structural Firefighting Task. Keene T; Brearley M; Bowen B; Walker A Prehosp Disaster Med; 2015 Oct; 30(5):461-5. PubMed ID: 26451779 [TBL] [Abstract][Full Text] [Related]
17. Reliability of intestinal temperature using an ingestible telemetry pill system during exercise in a hot environment. Ruddock AD; Tew GA; Purvis AJ J Strength Cond Res; 2014 Mar; 28(3):861-9. PubMed ID: 24561595 [TBL] [Abstract][Full Text] [Related]
18. Temporal artery versus bladder thermometry during perioperative and intensive care unit monitoring. Kimberger O; Cohen D; Illievich U; Lenhardt R Anesth Analg; 2007 Oct; 105(4):1042-7, table of contents. PubMed ID: 17898385 [TBL] [Abstract][Full Text] [Related]
19. An analysis of the effect of thermometer type and make on rectal temperature measurements of cattle, horses and sheep. Hine L; Laven RA; Sahu SK N Z Vet J; 2015 May; 63(3):171-3. PubMed ID: 25263731 [TBL] [Abstract][Full Text] [Related]
20. Ingestible sensors correlate closely with peripheral temperature measurements in febrile patients. Huang F; Magnin C; Brouqui P J Infect; 2020 Feb; 80(2):161-166. PubMed ID: 31734342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]