BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

782 related articles for article (PubMed ID: 36797231)

  • 1. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions.
    Chen Z; Han F; Du Y; Shi H; Zhou W
    Signal Transduct Target Ther; 2023 Feb; 8(1):70. PubMed ID: 36797231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy.
    Abou Khouzam R; Janji B; Thiery J; Zaarour RF; Chamseddine AN; Mayr H; Savagner P; Kieda C; Gad S; Buart S; Lehn JM; Limani P; Chouaib S
    Semin Cancer Biol; 2023 Dec; 97():104-123. PubMed ID: 38029865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors.
    Eckert F; Zwirner K; Boeke S; Thorwarth D; Zips D; Huber SM
    Front Immunol; 2019; 10():407. PubMed ID: 30930892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer.
    Chouaib S; Noman MZ; Kosmatopoulos K; Curran MA
    Oncogene; 2017 Jan; 36(4):439-445. PubMed ID: 27345407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor hypoxia: From basic knowledge to therapeutic implications.
    Liao C; Liu X; Zhang C; Zhang Q
    Semin Cancer Biol; 2023 Jan; 88():172-186. PubMed ID: 36603793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy.
    Wang B; Zhao Q; Zhang Y; Liu Z; Zheng Z; Liu S; Meng L; Xin Y; Jiang X
    J Exp Clin Cancer Res; 2021 Jan; 40(1):24. PubMed ID: 33422072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relevance between hypoxia-dependent spatial transcriptomics and the prognosis and efficacy of immunotherapy in claudin-low breast cancer.
    Sun H; Li Y; Zhang Y; Zhao X; Dong X; Guo Y; Mo J; Che N; Ban X; Li F; Bai X; Li Y; Hao J; Zhang D
    Front Immunol; 2022; 13():1042835. PubMed ID: 36685583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Promise of Targeting Hypoxia to Improve Cancer Immunotherapy: Mirage or Reality?
    Janji B; Chouaib S
    Front Immunol; 2022; 13():880810. PubMed ID: 35795658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer.
    Yasuda H
    Nitric Oxide; 2008 Sep; 19(2):205-16. PubMed ID: 18503779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment.
    Graham K; Unger E
    Int J Nanomedicine; 2018; 13():6049-6058. PubMed ID: 30323592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting DNA topoisomerase IIα (TOP2A) in the hypoxic tumour microenvironment using unidirectional hypoxia-activated prodrugs (uHAPs).
    Smith PJ; McKeown SR; Patterson LH
    IUBMB Life; 2023 Jan; 75(1):40-54. PubMed ID: 35499745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?
    Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y
    Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges.
    Noman MZ; Hasmim M; Lequeux A; Xiao M; Duhem C; Chouaib S; Berchem G; Janji B
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Critical Role of Hypoxic Microenvironment and Epigenetic Deregulation in Esophageal Cancer Radioresistance.
    Macedo-Silva C; Miranda-Gonçalves V; Henrique R; Jerónimo C; Bravo I
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31739546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy.
    Kheshtchin N; Hadjati J
    J Cell Physiol; 2022 Feb; 237(2):1285-1298. PubMed ID: 34796969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase subunit 4 mediates cycling hypoxia-promoted radiation resistance in glioblastoma multiforme.
    Hsieh CH; Wu CP; Lee HT; Liang JA; Yu CY; Lin YJ
    Free Radic Biol Med; 2012 Aug; 53(4):649-58. PubMed ID: 22713363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances In Developing Novel Anti-Cancer Drugs Targeting Tumor Hypoxic and Acidic Microenvironments.
    Li W; Sun X
    Recent Pat Anticancer Drug Discov; 2018; 13(4):455-468. PubMed ID: 30173649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atovaquone-HSA nano-drugs enhance the efficacy of PD-1 blockade immunotherapy by alleviating hypoxic tumor microenvironment.
    Wang S; Zhou X; Zeng Z; Sui M; Chen L; Feng C; Huang C; Yang Q; Ji M; Hou P
    J Nanobiotechnology; 2021 Oct; 19(1):302. PubMed ID: 34600560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia.
    Noman MZ; Hasmim M; Messai Y; Terry S; Kieda C; Janji B; Chouaib S
    Am J Physiol Cell Physiol; 2015 Nov; 309(9):C569-79. PubMed ID: 26310815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Hypoxia Risk Score Predicts the Clinical Outcomes and Tumor Microenvironment Immune Characters in Bladder Cancer.
    Liu Z; Tang Q; Qi T; Othmane B; Yang Z; Chen J; Hu J; Zu X
    Front Immunol; 2021; 12():725223. PubMed ID: 34484235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.