These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 36797247)
1. Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly. Yang F; Bian T; Zhan X; Chen Z; Xing Z; Larsen NA; Zhang X; Shi Y Nat Commun; 2023 Feb; 14(1):897. PubMed ID: 36797247 [TBL] [Abstract][Full Text] [Related]
2. Cancer-associated mutations in SF3B1 disrupt the interaction between SF3B1 and DDX42. Zhao B; Li Z; Qian R; Liu G; Fan M; Liang Z; Hu X; Wan Y J Biochem; 2022 Jul; 172(2):117-126. PubMed ID: 35652295 [TBL] [Abstract][Full Text] [Related]
3. Molecular architecture of the human 17S U2 snRNP. Zhang Z; Will CL; Bertram K; Dybkov O; Hartmuth K; Agafonov DE; Hofele R; Urlaub H; Kastner B; Lührmann R; Stark H Nature; 2020 Jul; 583(7815):310-313. PubMed ID: 32494006 [TBL] [Abstract][Full Text] [Related]
4. Structural insights into branch site proofreading by human spliceosome. Zhang X; Zhan X; Bian T; Yang F; Li P; Lu Y; Xing Z; Fan R; Zhang QC; Shi Y Nat Struct Mol Biol; 2024 May; 31(5):835-845. PubMed ID: 38196034 [TBL] [Abstract][Full Text] [Related]
5. Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. Will CL; Urlaub H; Achsel T; Gentzel M; Wilm M; Lührmann R EMBO J; 2002 Sep; 21(18):4978-88. PubMed ID: 12234937 [TBL] [Abstract][Full Text] [Related]
6. The pre-mRNA splicing and transcription factor Tat-SF1 is a functional partner of the spliceosome SF3b1 subunit via a U2AF homology motif interface. Loerch S; Leach JR; Horner SW; Maji D; Jenkins JL; Pulvino MJ; Kielkopf CL J Biol Chem; 2019 Feb; 294(8):2892-2902. PubMed ID: 30567737 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. van der Feltz C; Hoskins AA Crit Rev Biochem Mol Biol; 2019 Oct; 54(5):443-465. PubMed ID: 31744343 [TBL] [Abstract][Full Text] [Related]
8. SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Tang Q; Rodriguez-Santiago S; Wang J; Pu J; Yuste A; Gupta V; Moldón A; Xu YZ; Query CC Genes Dev; 2016 Dec; 30(24):2710-2723. PubMed ID: 28087715 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into how Prp5 proofreads the pre-mRNA branch site. Zhang Z; Rigo N; Dybkov O; Fourmann JB; Will CL; Kumar V; Urlaub H; Stark H; Lührmann R Nature; 2021 Aug; 596(7871):296-300. PubMed ID: 34349264 [TBL] [Abstract][Full Text] [Related]
10. RNA Splicing by the Spliceosome. Wilkinson ME; Charenton C; Nagai K Annu Rev Biochem; 2020 Jun; 89():359-388. PubMed ID: 31794245 [TBL] [Abstract][Full Text] [Related]
11. Structural basis of branch site recognition by the human spliceosome. Tholen J; Razew M; Weis F; Galej WP Science; 2022 Jan; 375(6576):50-57. PubMed ID: 34822310 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis for the activation of human spliceosome. Zhan X; Lu Y; Shi Y Nat Commun; 2024 Jul; 15(1):6348. PubMed ID: 39068178 [TBL] [Abstract][Full Text] [Related]
13. Interaction of mammalian splicing factor SF3a with U2 snRNP and relation of its 60-kD subunit to yeast PRP9. Brosi R; Gröning K; Behrens SE; Lührmann R; Krämer A Science; 1993 Oct; 262(5130):102-5. PubMed ID: 8211112 [TBL] [Abstract][Full Text] [Related]
14. Four yeast spliceosomal proteins (PRP5, PRP9, PRP11, and PRP21) interact to promote U2 snRNP binding to pre-mRNA. Ruby SW; Chang TH; Abelson J Genes Dev; 1993 Oct; 7(10):1909-25. PubMed ID: 8405998 [TBL] [Abstract][Full Text] [Related]
15. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction. Talkish J; Igel H; Hunter O; Horner SW; Jeffery NN; Leach JR; Jenkins JL; Kielkopf CL; Ares M RNA; 2019 Aug; 25(8):1020-1037. PubMed ID: 31110137 [TBL] [Abstract][Full Text] [Related]
16. A model for DHX15 mediated disassembly of A-complex spliceosomes. Maul-Newby HM; Amorello AN; Sharma T; Kim JH; Modena MS; Prichard BE; Jurica MS RNA; 2022 Apr; 28(4):583-595. PubMed ID: 35046126 [TBL] [Abstract][Full Text] [Related]
17. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. Krämer A; Grüter P; Gröning K; Kastner B J Cell Biol; 1999 Jun; 145(7):1355-68. PubMed ID: 10385517 [TBL] [Abstract][Full Text] [Related]
18. Evidence that the 60-kDa protein of 17S U2 small nuclear ribonucleoprotein is immunologically and functionally related to the yeast PRP9 splicing factor and is required for the efficient formation of prespliceosomes. Behrens SE; Galisson F; Legrain P; Lührmann R Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8229-33. PubMed ID: 8367487 [TBL] [Abstract][Full Text] [Related]
19. Functional association of U2 snRNP with the ATP-independent spliceosomal complex E. Das R; Zhou Z; Reed R Mol Cell; 2000 May; 5(5):779-87. PubMed ID: 10882114 [TBL] [Abstract][Full Text] [Related]
20. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Folco EG; Coil KE; Reed R Genes Dev; 2011 Mar; 25(5):440-4. PubMed ID: 21363962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]