BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36797837)

  • 1. An improved multi-source domain adaptation network for inter-subject mental fatigue detection based on DANN.
    Chen K; Liu Z; Li Z; Liu Q; Ai Q; Ma L
    Biomed Tech (Berl); 2023 Jun; 68(3):317-327. PubMed ID: 36797837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction.
    Zeng H; Li X; Borghini G; Zhao Y; Aricò P; Di Flumeri G; Sciaraffa N; Zakaria W; Kong W; Babiloni F
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Source Transfer Learning for EEG Classification Based on Domain Adversarial Neural Network.
    Liu D; Zhang J; Wu H; Liu S; Long J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():218-228. PubMed ID: 36331634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-source domain adaptation based tempo-spatial convolution network for cross-subject EEG classification in RSVP task.
    Wang X; Li B; Lin Y; Gao X
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38324909
    [No Abstract]   [Full Text] [Related]  

  • 5. EEG-based mental fatigue detection using linear prediction cepstral coefficients and Riemann spatial covariance matrix.
    Chen K; Liu Z; Liu Q; Ai Q; Ma L
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36356315
    [No Abstract]   [Full Text] [Related]  

  • 6. InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection.
    Zeng H; Zhang J; Zakaria W; Babiloni F; Gianluca B; Li X; Kong W
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cross-scenario and cross-subject domain adaptation method for driving fatigue detection.
    Luo Y; Liu W; Li H; Lu Y; Lu BL
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38838664
    [No Abstract]   [Full Text] [Related]  

  • 8. A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition.
    Chai X; Wang Q; Zhao Y; Li Y; Liu D; Liu X; Bai O
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28467371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing Calibration Efforts in RSVP Tasks With Multi-Source Adversarial Domain Adaptation.
    Wei W; Qiu S; Ma X; Li D; Wang B; He H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2344-2355. PubMed ID: 32924941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the Calibration Effort of EEG Emotion Recognition using Domain Adaptation with Soft Labels.
    Li Z; Chen H; Jin M; Li J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5962-5965. PubMed ID: 34892476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TSFAN: tensorized spatial-frequency attention network with domain adaptation for cross-session EEG-based biometric recognition.
    Jin X; Yang X; Kong W; Zhu L; Tang J; Peng Y; Ding Y; Zhao Q
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38866001
    [No Abstract]   [Full Text] [Related]  

  • 12. A regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based cross-subject fatigue detection.
    Yuan D; Yue J; Xu H; Wang Y; Zan P; Li C
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37721506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition.
    He Z; Zhong Y; Pan J
    Comput Biol Med; 2022 Feb; 141():105048. PubMed ID: 34838262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Representation-Based Domain Adaptation for Nonstationary EEG Classification.
    Zhao H; Zheng Q; Ma K; Li H; Zheng Y
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):535-545. PubMed ID: 32745012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transfer learning model with multi-source domains for biomedical event trigger extraction.
    Chen Y
    BMC Genomics; 2021 Jan; 22(1):31. PubMed ID: 33413073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition.
    Bao G; Zhuang N; Tong L; Yan B; Shu J; Wang L; Zeng Y; Shen Z
    Front Hum Neurosci; 2020; 14():605246. PubMed ID: 33551775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Transfer Learning Framework for RSVP-based Brain Computer Interface
    Wei W; Qiu S; Ma X; Li D; Zhang C; He H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2963-2968. PubMed ID: 33018628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-subject EEG emotion recognition using multi-source domain manifold feature selection.
    She Q; Shi X; Fang F; Ma Y; Zhang Y
    Comput Biol Med; 2023 Jun; 159():106860. PubMed ID: 37080005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FEM Simulation-Based Adversarial Domain Adaptation for Fatigue Crack Detection Using Lamb Wave.
    Wang L; Liu G; Zhang C; Yang Y; Qiu J
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.