These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36797872)

  • 1. Nonlinear ablative Rayleigh-Taylor instability: Increased growth due to self-generated magnetic fields.
    Walsh CA; Clark DS
    Phys Rev E; 2023 Jan; 107(1):L013201. PubMed ID: 36797872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetized ablative Rayleigh-Taylor instability in three dimensions.
    Walsh CA
    Phys Rev E; 2022 Feb; 105(2-2):025206. PubMed ID: 35291065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas.
    Srinivasan B; Dimonte G; Tang XZ
    Phys Rev Lett; 2012 Apr; 108(16):165002. PubMed ID: 22680725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Ablative Rayleigh-Taylor Instability Growth by Thermal Conduction Suppression in a Magnetic Field.
    Matsuo K; Sano T; Nagatomo H; Somekawa T; Law KFF; Morita H; Arikawa Y; Fujioka S
    Phys Rev Lett; 2021 Oct; 127(16):165001. PubMed ID: 34723597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Generated Magnetic Fields in the Stagnation Phase of Indirect-Drive Implosions on the National Ignition Facility.
    Walsh CA; Chittenden JP; McGlinchey K; Niasse NPL; Appelbe BD
    Phys Rev Lett; 2017 Apr; 118(15):155001. PubMed ID: 28452551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh-Taylor instability.
    Gao L; Nilson PM; Igumenschev IV; Fiksel G; Yan R; Davies JR; Martinez D; Smalyuk V; Haines MG; Blackman EG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2013 May; 110(18):185003. PubMed ID: 23683208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of pressure perturbations in ablation due to kinetic magnetized transport effects under direct-drive inertial confinement fusion relevant conditions.
    Hill DW; Kingham RJ
    Phys Rev E; 2018 Aug; 98(2-1):021201. PubMed ID: 30253597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic field generation from composition gradients in inertial confinement fusion fuel.
    Sadler JD; Li H; Flippo KA
    Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200045. PubMed ID: 33040655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inadequacy of a magnetohydrodynamic approach to the Biermann battery.
    Ridgers CP; Arran C; Bissell JJ; Kingham RJ
    Philos Trans A Math Phys Eng Sci; 2021 Jan; 379(2189):20200017. PubMed ID: 33280564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of the Biermann Battery and Stabilization of the Thermomagnetic Instability in Laser Fusion Conditions.
    Sherlock M; Bissell JJ
    Phys Rev Lett; 2020 Feb; 124(5):055001. PubMed ID: 32083939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision mapping of laser-driven magnetic fields and their evolution in high-energy-density plasmas.
    Gao L; Nilson PM; Igumenshchev IV; Haines MG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2015 May; 114(21):215003. PubMed ID: 26066442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test of thermal transport models through dynamic overpressure stabilization of ablation-front perturbation growth in laser-driven CH foils.
    Gotchev OV; Goncharov VN; Knauer JP; Boehly TR; Collins TJ; Epstein R; Jaanimagi PA; Meyerhofer DD
    Phys Rev Lett; 2006 Mar; 96(11):115005. PubMed ID: 16605835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear theory of the ablative Rayleigh-Taylor instability.
    Sanz J; Ramírez J; Ramis R; Betti R; Town RP
    Phys Rev Lett; 2002 Nov; 89(19):195002. PubMed ID: 12443120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces.
    Clark DS; Tabak M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability.
    Masse L
    Phys Rev Lett; 2007 Jun; 98(24):245001. PubMed ID: 17677970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bubble acceleration in the ablative Rayleigh-Taylor instability.
    Betti R; Sanz J
    Phys Rev Lett; 2006 Nov; 97(20):205002. PubMed ID: 17155687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous Nernst and Righi-Leduc Effects in Mn_{3}Sn: Berry Curvature and Entropy Flow.
    Li X; Xu L; Ding L; Wang J; Shen M; Lu X; Zhu Z; Behnia K
    Phys Rev Lett; 2017 Aug; 119(5):056601. PubMed ID: 28949739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field compressing magnetothermal instability in laser plasmas.
    Bissell JJ; Ridgers CP; Kingham RJ
    Phys Rev Lett; 2010 Oct; 105(17):175001. PubMed ID: 21231051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimode Hydrodynamic Instability Growth of Preimposed Isolated Defects in Ablatively Driven Foils.
    Zulick C; Aglitskiy Y; Karasik M; Schmitt AJ; Velikovich AL; Obenschain SP
    Phys Rev Lett; 2020 Jul; 125(5):055001. PubMed ID: 32794887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio.
    Ramaprabhu P; Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.