These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36797904)

  • 1. Nanoscale pattern formation produced by ion bombardment of a rotating target: The decisive role of the ion energy.
    Bradley RM; Pearson DA
    Phys Rev E; 2023 Jan; 107(1-1):014801. PubMed ID: 36797904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale pattern formation on solid surfaces bombarded by two broad ion beams in the regime in which sputtering is negligible.
    Bradley RM; Sharath T
    Phys Rev E; 2021 Feb; 103(2-1):022804. PubMed ID: 33735985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of nanoscale ripple topographies produced by ion bombardment near the threshold for pattern formation.
    Bradley RM
    Phys Rev E; 2020 Jul; 102(1-1):012807. PubMed ID: 32794991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous pattern formation induced by ion bombardment of binary compounds.
    Bradley RM; Shipman PD
    Phys Rev Lett; 2010 Oct; 105(14):145501. PubMed ID: 21230842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Producing nanodot arrays with improved hexagonal order by patterning surfaces before ion sputtering.
    Pearson DA; Bradley RM; Motta FC; Shipman PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062401. PubMed ID: 26764697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of the nanoscale surface ripples produced by ion irradiation of a miscut (001) gallium arsenide surface.
    Sharath T; Bradley RM
    Phys Rev E; 2022 Feb; 105(2-1):024801. PubMed ID: 35291122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale pattern formation on silicon surfaces bombarded with a krypton ion beam: experiments and simulations.
    Seo J; Pearson DA; Bradley RM; Kim JS
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35385840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal evolution on SiO
    Kumar M; Datta DP; Basu T; Garg SK; Hofsäss H; Som T
    J Phys Condens Matter; 2018 Aug; 30(33):334001. PubMed ID: 29978837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly ordered square arrays of nanoscale pyramids produced by ion bombardment of a crystalline binary material.
    Hashmi B; Shipman PD; Bradley RM
    Phys Rev E; 2016 Mar; 93(3):032207. PubMed ID: 27078344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations of ripple pattern formation on Germanium surfaces using 100-keV Ar(+) ions.
    Sulania I; Agarwal D; Husain M; Avasthi DK
    Nanoscale Res Lett; 2015; 10():88. PubMed ID: 25852384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale patterns formed by ion bombardment of rotating binary materials.
    Harrison MP; Bradley RM
    J Phys Condens Matter; 2015 Jul; 27(29):295301. PubMed ID: 26139692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content.
    Redondo-Cubero A; Galiana B; Lorenz K; Palomares FJ; Bahena D; Ballesteros C; Hernandez-Calderón I; Vázquez L
    Nanotechnology; 2016 Nov; 27(44):444001. PubMed ID: 27670245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of terraced topographies produced by oblique-incidence ion bombardment of solid surfaces.
    Pearson DA; Bradley RM
    J Phys Condens Matter; 2015 Jan; 27(1):015010. PubMed ID: 25478874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets.
    Muñoz-García J; Cuerno R; Castro M
    J Phys Condens Matter; 2009 Jun; 21(22):224020. PubMed ID: 21715758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering.
    Ziberi B; Cornejo M; Frost F; Rauschenbach B
    J Phys Condens Matter; 2009 Jun; 21(22):224003. PubMed ID: 21715742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence and detailed structure of terraced surfaces produced by oblique-incidence ion sputtering.
    Harrison MP; Pearson DA; Bradley RM
    Phys Rev E; 2017 Sep; 96(3-1):032804. PubMed ID: 29346880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetization switching in high-density magnetic nanodots by a fine-tune sputtering process on a large-area diblock copolymer mask.
    Barrera G; Celegato F; Coïsson M; Manzin A; Ferrarese Lupi F; Seguini G; Boarino L; Aprile G; Perego M; Tiberto P
    Nanoscale; 2017 Nov; 9(43):16981-16992. PubMed ID: 29077107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Producing virtually defect-free nanoscale ripples by ion bombardment of rocked solid surfaces.
    Harrison MP; Bradley RM
    Phys Rev E; 2016 Apr; 93():040802. PubMed ID: 27176243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.
    Timilsina R; Rack PD
    Nanotechnology; 2013 Dec; 24(49):495303. PubMed ID: 24231648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations.
    Defoort-Levkov GRN; Bahm A; Philipp P
    Beilstein J Nanotechnol; 2022; 13():986-1003. PubMed ID: 36225852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.