These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The way from microscopic many-particle theory to macroscopic hydrodynamics. Haussmann R J Phys Condens Matter; 2016 Mar; 28(11):113001. PubMed ID: 26902659 [TBL] [Abstract][Full Text] [Related]
3. Emergent entropy production and hydrodynamics in quantum many-body systems. Banks T; Lucas A Phys Rev E; 2019 Feb; 99(2-1):022105. PubMed ID: 30934247 [TBL] [Abstract][Full Text] [Related]
4. Generalized Green-Kubo relation and integral fluctuation theorem for driven dissipative systems without microscopic time reversibility. Chong SH; Otsuki M; Hayakawa H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041130. PubMed ID: 20481700 [TBL] [Abstract][Full Text] [Related]
5. Unified formalism for entropy production and fluctuation relations. Yang YJ; Qian H Phys Rev E; 2020 Feb; 101(2-1):022129. PubMed ID: 32168673 [TBL] [Abstract][Full Text] [Related]
6. Continuum mechanics of nonideal crystals: Microscopic approach based on projection-operator formalism. Miserez F; Ganguly S; Haussmann R; Fuchs M Phys Rev E; 2022 Nov; 106(5-1):054125. PubMed ID: 36559486 [TBL] [Abstract][Full Text] [Related]
7. Nonequilibrium identities and response theory for dissipative particles. Hayakawa H; Otsuki M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032117. PubMed ID: 24125223 [TBL] [Abstract][Full Text] [Related]
8. Generalized Green-Kubo formulas for fluids with impulsive, dissipative, stochastic, and conservative interactions. Ernst MH; Brito R Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061102. PubMed ID: 16485926 [TBL] [Abstract][Full Text] [Related]
9. The second law as a selection principle: The microscopic theory of dissipative processes in quantum systems. Prigogine I; George C Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4590-4. PubMed ID: 16593345 [TBL] [Abstract][Full Text] [Related]
10. Symplectic Foliation Structures of Non-Equilibrium Thermodynamics as Dissipation Model: Application to Metriplectic Nonlinear Lindblad Quantum Master Equation. Barbaresco F Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359716 [TBL] [Abstract][Full Text] [Related]
11. Theory for non-equilibrium statistical mechanics. Attard P Phys Chem Chem Phys; 2006 Aug; 8(31):3585-611. PubMed ID: 16883388 [TBL] [Abstract][Full Text] [Related]
13. Transport coefficients from Einstein-Helfand relations using standard and energy-conserving dissipative particle dynamics methods. Malaspina DC; Lísal M; Larentzos JP; Brennan JK; Mackie AD; Avalos JB Phys Chem Chem Phys; 2023 May; 25(17):12025-12040. PubMed ID: 37082893 [TBL] [Abstract][Full Text] [Related]
14. Microscopic theory of a Janus motor in a non-equilibrium fluid: Surface hydrodynamics and boundary conditions. Robertson B; Schofield J; Kapral R J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38165093 [TBL] [Abstract][Full Text] [Related]
16. Linear response and hydrodynamics for granular fluids. Dufty J; Baskaran A; Brey JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031310. PubMed ID: 18517373 [TBL] [Abstract][Full Text] [Related]
17. Microscopic derivation of discrete hydrodynamics. Español P; Anero JG; Zúñiga I J Chem Phys; 2009 Dec; 131(24):244117. PubMed ID: 20059064 [TBL] [Abstract][Full Text] [Related]
18. Interpretation of Second Law of Thermodynamics in Extended Procedures for the Exploitation of the Entropy Inequality: Korteweg Fluids and Strain-Gradient Elasticity as Examples. Cimmelli VA Entropy (Basel); 2024 Mar; 26(4):. PubMed ID: 38667847 [TBL] [Abstract][Full Text] [Related]
19. Transport coefficients of non-Newtonian fluid and causal dissipative hydrodynamics. Koide T; Kodama T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051107. PubMed ID: 19113095 [TBL] [Abstract][Full Text] [Related]
20. Nonlinear driven diffusive systems with dissipation: fluctuating hydrodynamics. Prados A; Lasanta A; Hurtado PI Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031134. PubMed ID: 23030893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]