These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36797940)

  • 1. g-fractional diffusion models in bounded domains.
    Angelani L; Garra R
    Phys Rev E; 2023 Jan; 107(1-1):014127. PubMed ID: 36797940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subdiffusion equation with fractional Caputo time derivative with respect to another function in modeling transition from ordinary subdiffusion to superdiffusion.
    Kosztołowicz T
    Phys Rev E; 2023 Jun; 107(6-1):064103. PubMed ID: 37464604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subdiffusion equation with Caputo fractional derivative with respect to another function in modeling diffusion in a complex system consisting of a matrix and channels.
    Kosztołowicz T; Dutkiewicz A; Lewandowska KD; Wąsik S; Arabski M
    Phys Rev E; 2022 Oct; 106(4-1):044138. PubMed ID: 36397549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subdiffusion equation with Caputo fractional derivative with respect to another function.
    Kosztołowicz T; Dutkiewicz A
    Phys Rev E; 2021 Jul; 104(1-1):014118. PubMed ID: 34412326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous diffusion with absorbing boundary.
    Kantor Y; Kardar M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061121. PubMed ID: 18233828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subdiffusive master equation with space-dependent anomalous exponent and structural instability.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031132. PubMed ID: 22587063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations.
    Angstmann CN; Henry BI
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-passage time distributions for subdiffusion in confined geometry.
    Condamin S; Bénichou O; Klafter J
    Phys Rev Lett; 2007 Jun; 98(25):250602. PubMed ID: 17678006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite subdiffusion equation that describes transient subdiffusion.
    Kosztołowicz T; Dutkiewicz A
    Phys Rev E; 2022 Oct; 106(4-1):044119. PubMed ID: 36397481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent series and memory of the initial condition in the long-time solution of some anomalous diffusion problems.
    Yuste SB; Borrego R; Abad E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021105. PubMed ID: 20365528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicit scheme for solving variable-order time-fractional initial boundary value problems.
    Kanwal A; Boulaaras S; Shafqat R; Taufeeq B; Ur Rahman M
    Sci Rep; 2024 Mar; 14(1):5396. PubMed ID: 38443513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-passage time for the g-subdiffusion process of vanishing particles.
    Kosztołowicz T
    Phys Rev E; 2022 Aug; 106(2):L022104. PubMed ID: 36110021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and convergence of an implicit numerical method for the space and time fractional Bloch-Torrey equation.
    Yu Q; Liu F; Turner I; Burrage K
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120150. PubMed ID: 23547227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractional-time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower.
    Goychuk I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021113. PubMed ID: 23005728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenched and annealed disorder mechanisms in comb models with fractional operators.
    Tateishi AA; Ribeiro HV; Sandev T; Petreska I; Lenzi EK
    Phys Rev E; 2020 Feb; 101(2-1):022135. PubMed ID: 32168676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME.
    Blanc E; Engblom S; Hellander A; Lötstedt P
    Multiscale Model Simul; 2016; 14(2):668-707. PubMed ID: 29046618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation Structure of Fractional Pearson Diffusions.
    Leonenko NN; Meerschaert MM; Sikorskii A
    Comput Math Appl; 2013 Sep; 66(5):737-745. PubMed ID: 24089586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications.
    Lawley SD
    Phys Rev E; 2020 Oct; 102(4-1):042125. PubMed ID: 33212732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean first passage time for anomalous diffusion.
    Gitterman M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6065-70. PubMed ID: 11101935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRANSIENT ANOMALOUS SUB-DIFFUSION ON BOUNDED DOMAINS.
    Meerschaert MM; Nane E; Vellaisamy P
    Proc Am Math Soc; 2012 Jun; 2013(141):699-710. PubMed ID: 24639592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.