These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36797952)

  • 1. Analysis of autocorrelation times in neural Markov chain Monte Carlo simulations.
    Białas P; Korcyl P; Stebel T
    Phys Rev E; 2023 Jan; 107(1-2):015303. PubMed ID: 36797952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Irreversible Monte Carlo Samplers.
    Faizi F; Deligiannidis G; Rosta E
    J Chem Theory Comput; 2020 Apr; 16(4):2124-2138. PubMed ID: 32097548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Monte Carlo efficiency by Monte Carlo analysis.
    Rubenstein BM; Gubernatis JE; Doll JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceleration of Markov chain Monte Carlo simulations through sequential updating.
    Ren R; Orkoulas G
    J Chem Phys; 2006 Feb; 124(6):64109. PubMed ID: 16483198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markov chain Monte Carlo method without detailed balance.
    Suwa H; Todo S
    Phys Rev Lett; 2010 Sep; 105(12):120603. PubMed ID: 20867621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layered nested Markov chain Monte Carlo.
    Jackson NE; Webb MA; de Pablo JJ
    J Chem Phys; 2018 Aug; 149(7):072326. PubMed ID: 30134725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceptance rate is a thermodynamic function in local Monte Carlo algorithms.
    Burovski E; Janke W; Guskova M; Shchur L
    Phys Rev E; 2019 Dec; 100(6-1):063303. PubMed ID: 31962540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From network reliability to the Ising model: A parallel scheme for estimating the joint density of states.
    Ren Y; Eubank S; Nath M
    Phys Rev E; 2016 Oct; 94(4-1):042125. PubMed ID: 27841505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rényi information flow in the Ising model with single-spin dynamics.
    Deng Z; Wu J; Guo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063308. PubMed ID: 25615223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metropolis sampling in pedigree analysis.
    Sobel E; Lange K
    Stat Methods Med Res; 1993; 2(3):263-82. PubMed ID: 8261261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized directed loop method for quantum Monte Carlo simulations.
    Alet F; Wessel S; Troyer M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036706. PubMed ID: 15903632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical dynamics of cluster algorithms in the random-bond Ising model.
    Kanbur U; Vatansever ZD
    Phys Rev E; 2024 Feb; 109(2-1):024140. PubMed ID: 38491603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Coordinate Ascent Variational Inference: A Case Study in 2D Ising Models.
    Plummer S; Pati D; Bhattacharya A
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kullback-Leibler Divergence-Based Differential Evolution Markov Chain Filter for Global Localization of Mobile Robots.
    Martín F; Moreno L; Garrido S; Blanco D
    Sensors (Basel); 2015 Sep; 15(9):23431-58. PubMed ID: 26389914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks.
    McNaughton B; Milošević MV; Perali A; Pilati S
    Phys Rev E; 2020 May; 101(5-1):053312. PubMed ID: 32575304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F; Jin IH
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric allocation approach to accelerating directed worm algorithm.
    Suwa H
    Phys Rev E; 2021 Jan; 103(1-1):013308. PubMed ID: 33601561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-equilibrium dynamics of the frustrated Ising lattice gas.
    Stariolo DA; Arenzon JJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):R4762-5. PubMed ID: 11969514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kullback-Leibler Markov chain Monte Carlo--a new algorithm for finite mixture analysis and its application to gene expression data.
    Tatarinova T; Bouck J; Schumitzky A
    J Bioinform Comput Biol; 2008 Aug; 6(4):727-46. PubMed ID: 18763739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.