These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36798192)

  • 1. Diminishing neuronal acidification by channelrhodopsins with low proton conduction.
    Hayward RF; Brooks FP; Yang S; Gao S; Cohen AE
    bioRxiv; 2023 Sep; ():. PubMed ID: 36798192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diminishing neuronal acidification by channelrhodopsins with low proton conduction.
    Hayward RF; Brooks FP; Yang S; Gao S; Cohen AE
    Elife; 2023 Oct; 12():. PubMed ID: 37801078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study.
    Bansal H; Pyari G; Roy S
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320791
    [No Abstract]   [Full Text] [Related]  

  • 4. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.
    Karathanos TV; Bayer JD; Wang D; Boyle PM; Trayanova NA
    J Physiol; 2016 Dec; 594(23):6879-6891. PubMed ID: 26941055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons.
    Babl SS; Rummell BP; Sigurdsson T
    Cell Rep; 2019 Oct; 29(5):1381-1395.e4. PubMed ID: 31665647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors.
    Yu C; Cassar IR; Sambangi J; Grill WM
    J Neurosci; 2020 May; 40(22):4323-4334. PubMed ID: 32312888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional screening yields channelrhodopsin variants having improved photocurrent and order-of-magnitude reductions in calcium and proton currents.
    Cho YK; Park D; Yang A; Chen F; Chuong AS; Klapoetke NC; Boyden ES
    J Biol Chem; 2019 Mar; 294(11):3806-3821. PubMed ID: 30610117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons.
    Meng X; Murali S; Cheng YF; Lu J; Hight AE; Kanumuri VV; Brown MC; Holt JR; Lee DJ; Edge ASB
    J Neurophysiol; 2019 Nov; 122(5):1962-1974. PubMed ID: 31533018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway.
    Guo W; Hight AE; Chen JX; Klapoetke NC; Hancock KE; Shinn-Cunningham BG; Boyden ES; Lee DJ; Polley DB
    Sci Rep; 2015 May; 5():10319. PubMed ID: 26000557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Synaptic Signaling with Optogenetic Stimulation and Genetically Encoded Calcium Reporters.
    Borja GB; Shroff H; Upadhyay H; Liu PW; Baru V; Cheng YC; McManus OB; Williams LA; Dempsey GT; Werley CA
    Methods Mol Biol; 2021; 2191():109-134. PubMed ID: 32865742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making light work of fine-tuning channelrhodopsins.
    Moorhouse AJ; Power JM
    J Biol Chem; 2019 Mar; 294(11):3822-3823. PubMed ID: 30877261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin.
    Ikefuama EC; Kendziorski GE; Anderson K; Shafau L; Prakash M; Hochgeschwender U; Petersen ED
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic Channelrhodopsin from the Alga Platymonas subcordiformis as a Promising Optogenetic Tool.
    Idzhilova OS; Smirnova GR; Petrovskaya LE; Kolotova DA; Ostrovsky MA; Malyshev AY
    Biochemistry (Mosc); 2022 Nov; 87(11):1327-1334. PubMed ID: 36509722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways.
    Darrow KN; Slama MC; Kozin ED; Owoc M; Hancock K; Kempfle J; Edge A; Lacour S; Boyden E; Polley D; Brown MC; Lee DJ
    Brain Res; 2015 Mar; 1599():44-56. PubMed ID: 25481416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrally distinct channelrhodopsins for two-colour optogenetic peripheral nerve stimulation.
    Maimon BE; Sparks K; Srinivasan S; Zorzos AN; Herr HM
    Nat Biomed Eng; 2018 Jul; 2(7):485-496. PubMed ID: 30948823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaky expression of channelrhodopsin-2 (ChR2) in Ai32 mouse lines.
    Prabhakar A; Vujovic D; Cui L; Olson W; Luo W
    PLoS One; 2019; 14(3):e0213326. PubMed ID: 30913225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the Time Domain of Neuronal Silencing with Cryptophyte Anion Channelrhodopsins.
    Govorunova EG; Sineshchekov OA; Hemmati R; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    eNeuro; 2018; 5(3):. PubMed ID: 30027111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined-electrical optogenetic stimulation but not channelrhodopsin kinetics improves the fidelity of high rate stimulation in the auditory pathway in mice.
    Ajay EA; Thompson AC; Azees AA; Wise AK; Grayden DB; Fallon JB; Richardson RT
    Sci Rep; 2024 Sep; 14(1):21028. PubMed ID: 39251630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.