These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 36798248)

  • 1. Variational Temporal Deconfounder for Individualized Treatment Effect Estimation with Longitudinal Observational Data.
    Feng Z; Prosperi M; Guo Y; Bian J
    Res Sq; 2023 Feb; ():. PubMed ID: 36798248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DR-VIDAL - Doubly Robust Variational Information-theoretic Deep Adversarial Learning for Counterfactual Prediction and Treatment Effect Estimation on Real World Data.
    Ghosh S; Feng Z; Bian J; Butler K; Prosperi M
    AMIA Annu Symp Proc; 2022; 2022():485-494. PubMed ID: 37128454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On learning disentangled representations for individual treatment effect estimation.
    Chu J; Sun Z; Dong W; Shi J; Huang Z
    J Biomed Inform; 2021 Dec; 124():103940. PubMed ID: 34728379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term causal effects estimation via latent surrogates representation learning.
    Cai R; Chen W; Yang Z; Wan S; Zheng C; Yang X; Guo J
    Neural Netw; 2024 Aug; 176():106336. PubMed ID: 38703421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Unique and Unbiased Causal Effect Estimation From Data With Hidden Variables.
    Cheng D; Li J; Liu L; Yu K; Duy Le T; Liu J
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):6108-6120. PubMed ID: 34995195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep representation learning for individualized treatment effect estimation using electronic health records.
    Chen P; Dong W; Lu X; Kaymak U; He K; Huang Z
    J Biomed Inform; 2019 Dec; 100():103303. PubMed ID: 31610264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disentangled representation for sequential treatment effect estimation.
    Chu J; Zhang Y; Huang F; Si L; Huang S; Huang Z
    Comput Methods Programs Biomed; 2022 Nov; 226():107175. PubMed ID: 36242866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases.
    Benasseur I; Talbot D; Durand M; Holbrook A; Matteau A; Potter BJ; Renoux C; Schnitzer ME; Tarride JÉ; Guertin JR
    Pharmacoepidemiol Drug Saf; 2022 Apr; 31(4):424-433. PubMed ID: 34953160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal inference accounting for unobserved confounding after outcome regression and doubly robust estimation.
    Genbäck M; de Luna X
    Biometrics; 2019 Jun; 75(2):506-515. PubMed ID: 30430543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MC-RVAE: Multi-channel recurrent variational autoencoder for multimodal Alzheimer's disease progression modelling.
    Martí-Juan G; Lorenzi M; Piella G;
    Neuroimage; 2023 Mar; 268():119892. PubMed ID: 36682509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The productivity of mental health care: an instrumental variable approach.
    Lu M
    J Ment Health Policy Econ; 1999 Jun; 2(2):59-71. PubMed ID: 11967410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Causal inference for observational longitudinal studies using deep survival models.
    Zhu J; Gallego B
    J Biomed Inform; 2022 Jul; 131():104119. PubMed ID: 35714819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning for Treatment Assignment: Improving Individualized Risk Attribution.
    Weiss J; Kuusisto F; Boyd K; Liu J; Page D
    AMIA Annu Symp Proc; 2015; 2015():1306-15. PubMed ID: 26958271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DOUBLY DEBIASED LASSO: HIGH-DIMENSIONAL INFERENCE UNDER HIDDEN CONFOUNDING.
    Guo Z; Ćevid D; Bühlmann P
    Ann Stat; 2022 Jun; 50(3):1320-1347. PubMed ID: 35958884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven confounder selection via Markov and Bayesian networks.
    Häggström J
    Biometrics; 2018 Jun; 74(2):389-398. PubMed ID: 29096036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variational Beta Process Hidden Markov Models with Shared Hidden States for Trajectory Recognition.
    Zhao J; Zhang Y; Sun S; Dai H
    Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34682013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowledge Distillation via Constrained Variational Inference.
    Saeedi A; Utsumi Y; Sun L; Batmanghelich K; Lehman LH
    Proc AAAI Conf Artif Intell; 2022; 36(7):8132-8140. PubMed ID: 36092768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.