BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36798252)

  • 1. Simultaneous Electrophysiology and Optogenetic Perturbation of the Same Neurons in Chronically Implanted Animals using μLED Silicon Probes.
    Kinsky NR; Vöröslakos M; Ruiz JRL; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous electrophysiology and optogenetic perturbation of the same neurons in chronically implanted animals using μLED silicon probes.
    Kinsky NR; Vöröslakos M; Lopez Ruiz JR; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    STAR Protoc; 2023 Dec; 4(4):102570. PubMed ID: 37729059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals.
    Wu F; Stark E; Ku PC; Wise KD; Buzsáki G; Yoon E
    Neuron; 2015 Dec; 88(6):1136-1148. PubMed ID: 26627311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact Optical Neural Probes With Up to 20 Integrated Thin-Film μLEDs Applied in Acute Optogenetic Studies.
    Ayub S; David F; Klein E; Borel M; Paul O; Gentet LJ; Ruther P
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2603-2615. PubMed ID: 31940517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HectoSTAR μLED Optoelectrodes for Large-Scale, High-Precision In Vivo Opto-Electrophysiology.
    Vöröslakos M; Kim K; Slager N; Ko E; Oh S; Parizi SS; Hendrix B; Seymour JP; Wise KD; Buzsáki G; Fernández-Ruiz A; Yoon E
    Adv Sci (Weinh); 2022 Jun; 9(18):e2105414. PubMed ID: 35451232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe.
    McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K
    Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe.
    Scharf R; Tsunematsu T; McAlinden N; Dawson MD; Sakata S; Mathieson K
    Sci Rep; 2016 Jun; 6():28381. PubMed ID: 27334849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Density, Double-Sided, Flexible Optoelectronic Neural Probes With Embedded μLEDs.
    Reddy JW; Kimukin I; Stewart LT; Ahmed Z; Barth AL; Towe E; Chamanzar M
    Front Neurosci; 2019; 13():745. PubMed ID: 31456654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tools for probing local circuits: high-density silicon probes combined with optogenetics.
    Buzsáki G; Stark E; Berényi A; Khodagholy D; Kipke DR; Yoon E; Wise KD
    Neuron; 2015 Apr; 86(1):92-105. PubMed ID: 25856489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Optogenetic Modulation with Simultaneous Neural Detection Using Microelectrode Array Integrated with Optical Fiber.
    Fan P; Song Y; Xu S; Dai Y; Wang Y; Lu B; Xie J; Wang H; Cai X
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation.
    Guan S; Tian H; Yang Y; Liu M; Ding J; Wang J; Fang Y
    Nat Protoc; 2023 Jun; 18(6):1712-1744. PubMed ID: 37248393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-Optical Interrogation of Neural Circuits.
    Emiliani V; Cohen AE; Deisseroth K; Häusser M
    J Neurosci; 2015 Oct; 35(41):13917-26. PubMed ID: 26468193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes.
    Kim K; Vöröslakos M; Seymour JP; Wise KD; Buzsáki G; Yoon E
    Nat Commun; 2020 Apr; 11(1):2063. PubMed ID: 32345971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.
    Kim EG; Tu H; Luo H; Liu B; Bao S; Zhang J; Xu Y
    Lab Chip; 2015 Jul; 15(14):2939-49. PubMed ID: 26097907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology.
    Zou L; Tian H; Guan S; Ding J; Gao L; Wang J; Fang Y
    Nat Commun; 2021 Oct; 12(1):5871. PubMed ID: 34620851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A drivable optrode for use in chronic electrophysiology and optogenetic experiments.
    Stocke SK; Samuelsen CL
    J Neurosci Methods; 2021 Jan; 348():108979. PubMed ID: 33096153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.