BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36798359)

  • 1. Mechanical control of neural plate folding by apical domain alteration.
    Matsuda M; Rozman J; Ostvar S; Kasza KE; Sokol SY
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical control of neural plate folding by apical domain alteration.
    Matsuda M; Rozman J; Ostvar S; Kasza KE; Sokol SY
    Nat Commun; 2023 Dec; 14(1):8475. PubMed ID: 38123550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.
    Inoue Y; Suzuki M; Watanabe T; Yasue N; Tateo I; Adachi T; Ueno N
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1733-1746. PubMed ID: 27193152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure.
    Ossipova O; Kim K; Lake BB; Itoh K; Ioannou A; Sokol SY
    Nat Commun; 2014 May; 5():3734. PubMed ID: 24818582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formin homology 2 domain-containing 3 (Fhod3) controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction.
    Sulistomo HW; Nemoto T; Yanagita T; Takeya R
    J Biol Chem; 2019 Feb; 294(8):2924-2934. PubMed ID: 30573686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate.
    Chuykin I; Ossipova O; Sokol SY
    Elife; 2018 Sep; 7():. PubMed ID: 30256191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling.
    Ossipova O; Kim K; Sokol SY
    Biol Open; 2015 Apr; 4(6):722-30. PubMed ID: 25910938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar cell polarity links axes of spatial dynamics in neural-tube closure.
    Nishimura T; Honda H; Takeichi M
    Cell; 2012 May; 149(5):1084-97. PubMed ID: 22632972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scribble mutation disrupts convergent extension and apical constriction during mammalian neural tube closure.
    Lesko AC; Keller R; Chen P; Sutherland A
    Dev Biol; 2021 Oct; 478():59-75. PubMed ID: 34029538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure.
    Christodoulou N; Skourides PA
    Development; 2022 Jul; 149(13):. PubMed ID: 35662330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure.
    Haigo SL; Hildebrand JD; Harland RM; Wallingford JB
    Curr Biol; 2003 Dec; 13(24):2125-37. PubMed ID: 14680628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB.
    Rolo A; Skoglund P; Keller R
    Dev Biol; 2009 Mar; 327(2):327-38. PubMed ID: 19121300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure.
    McGreevy EM; Vijayraghavan D; Davidson LA; Hildebrand JD
    Biol Open; 2015 Jan; 4(2):186-96. PubMed ID: 25596276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the mechanisms of neurulation in the chick: morphometric analysis of force distribution within the neuroepithelium during neural tube formation.
    Nagele RG; Hunter E; Bush K; Lee HY
    J Exp Zool; 1987 Dec; 244(3):425-36. PubMed ID: 3443831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct intracellular Ca
    Suzuki M; Sato M; Koyama H; Hara Y; Hayashi K; Yasue N; Imamura H; Fujimori T; Nagai T; Campbell RE; Ueno N
    Development; 2017 Apr; 144(7):1307-1316. PubMed ID: 28219946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus.
    Morita H; Kajiura-Kobayashi H; Takagi C; Yamamoto TS; Nonaka S; Ueno N
    Development; 2012 Apr; 139(8):1417-26. PubMed ID: 22378637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal analysis of PCP protein dynamics during neural tube closure.
    Butler MT; Wallingford JB
    Elife; 2018 Aug; 7():. PubMed ID: 30080139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronisation of apical constriction and cell cycle progression is a conserved behaviour of pseudostratified neuroepithelia informed by their tissue geometry.
    Ampartzidis I; Efstathiou C; Paonessa F; Thompson EM; Wilson T; McCann CJ; Greene N; Copp AJ; Livesey FJ; Elvassore N; Giobbe GG; De Coppi P; Maniou E; Galea GL
    Dev Biol; 2023 Feb; 494():60-70. PubMed ID: 36509125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lulu regulates Shroom-induced apical constriction during neural tube closure.
    Chu CW; Gerstenzang E; Ossipova O; Sokol SY
    PLoS One; 2013; 8(11):e81854. PubMed ID: 24282618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure.
    Shi DL
    Cell Mol Life Sci; 2022 Nov; 79(12):586. PubMed ID: 36369349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.