BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36798453)

  • 1. Offline Learning of Closed-Loop Deep Brain Stimulation Controllers for Parkinson Disease Treatment.
    Gao Q; Schimdt SL; Chowdhury A; Feng G; Peters JJ; Genty K; Grill WM; Turner DA; Pajic M
    ArXiv; 2023 Mar; ():. PubMed ID: 36798453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ε-Neural Thompson Sampling of Deep Brain Stimulation for Parkinson Disease Treatment.
    Hsu HL; Gao Q; Pajic M
    ArXiv; 2024 Mar; ():. PubMed ID: 38560737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive deep brain stimulation for Parkinson's disease: looking back at the past decade on motor outcomes.
    An Q; Yin Z; Ma R; Fan H; Xu Y; Gan Y; Gao Y; Meng F; Yang A; Jiang Y; Zhu G; Zhang J
    J Neurol; 2023 Mar; 270(3):1371-1387. PubMed ID: 36471098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formal Verification of Deep Brain Stimulation Controllers for Parkinson's Disease Treatment.
    Nawaz A; Hasan O; Jabeen S
    Neural Comput; 2023 Mar; 35(4):671-698. PubMed ID: 36827600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute effects of adaptive Deep Brain Stimulation in Parkinson's disease.
    Piña-Fuentes D; van Dijk JMC; van Zijl JC; Moes HR; van Laar T; Oterdoom DLM; Little S; Brown P; Beudel M
    Brain Stimul; 2020; 13(6):1507-1516. PubMed ID: 32738409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-Based Evaluation of Closed-Loop Deep Brain Stimulation Controller to Adapt to Dynamic Changes in Reference Signal.
    Su F; Kumaravelu K; Wang J; Grill WM
    Front Neurosci; 2019; 13():956. PubMed ID: 31551704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient suppression of parkinsonian beta oscillations in a closed-loop model of deep brain stimulation with amplitude modulation.
    Bahadori-Jahromi F; Salehi S; Madadi Asl M; Valizadeh A
    Front Hum Neurosci; 2022; 16():1013155. PubMed ID: 36776221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation.
    During MJ; Kaplitt MG; Stern MB; Eidelberg D
    Hum Gene Ther; 2001 Aug; 12(12):1589-91. PubMed ID: 11529246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BGRL: Basal Ganglia inspired Reinforcement Learning based framework for deep brain stimulators.
    Agarwal H; Rathore H
    Artif Intell Med; 2024 Jan; 147():102736. PubMed ID: 38184360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Reinforcement Learning to Deep Brain Stimulation in a Computational Model of Parkinson's Disease.
    Lu M; Wei X; Che Y; Wang J; Loparo KA
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):339-349. PubMed ID: 31715567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients.
    Velisar A; Syrkin-Nikolau J; Blumenfeld Z; Trager MH; Afzal MF; Prabhakar V; Bronte-Stewart H
    Brain Stimul; 2019; 12(4):868-876. PubMed ID: 30833216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches to closed-loop deep brain stimulation for movement disorders.
    Kuo CH; White-Dzuro GA; Ko AL
    Neurosurg Focus; 2018 Aug; 45(2):E2. PubMed ID: 30064321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.
    Wang CF; Yang SH; Lin SH; Chen PC; Lo YC; Pan HC; Lai HY; Liao LD; Lin HC; Chen HY; Huang WC; Huang WJ; Chen YY
    Brain Stimul; 2017; 10(3):672-683. PubMed ID: 28298263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of robust adaptive controller and feedback error learning for rehabilitation in Parkinson's disease: a simulation study.
    Rouhollahi K; Emadi Andani M; Karbassi SM; Izadi I
    IET Syst Biol; 2017 Feb; 11(1):19-29. PubMed ID: 28303790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Relationship Between Electrical Energy Delivered by Deep Brain Stimulation and Levodopa-Induced Dyskinesias in Parkinson's Disease: A Retrospective Preliminary Analysis.
    Prenassi M; Arlotti M; Borellini L; Bocci T; Cogiamanian F; Locatelli M; Rampini P; Barbieri S; Priori A; Marceglia S
    Front Neurol; 2021; 12():643841. PubMed ID: 34135846
    [No Abstract]   [Full Text] [Related]  

  • 16. Prediction of depression and anxiety via patient-assessed tremor severity, not physician-reported motor symptom severity, in patients with Parkinson's disease or essential tremor who have undergone deep brain stimulation.
    Achey RL; Yamamoto E; Sexton D; Hammer C; Lee BS; Butler RS; Thompson NR; Nagel SJ; Machado AG; Lobel DA
    J Neurosurg; 2018 Dec; 129(6):1562-1571. PubMed ID: 29473781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subspace-based predictive control of Parkinson's disease: A model-based study.
    Ahmadipour M; Barkhordari-Yazdi M; Seydnejad SR
    Neural Netw; 2021 Oct; 142():680-689. PubMed ID: 34403908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive deep brain stimulation as advanced Parkinson's disease treatment (ADAPT study): protocol for a pseudo-randomised clinical study.
    Piña-Fuentes D; Beudel M; Little S; Brown P; Oterdoom DLM; van Dijk JMC
    BMJ Open; 2019 Jun; 9(6):e029652. PubMed ID: 31201193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable sensor-driven responsive deep brain stimulation for essential tremor.
    Cernera S; Alcantara JD; Opri E; Cagle JN; Eisinger RS; Boogaart Z; Pramanik L; Kelberman M; Patel B; Foote KD; Okun MS; Gunduz A
    Brain Stimul; 2021; 14(6):1434-1443. PubMed ID: 34547503
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.