These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36798611)

  • 1. On the specific heat capacity of HITEC-salt nanocomposites for concentrated solar power applications.
    Parida DR; Basu S
    RSC Adv; 2023 Feb; 13(8):5496-5508. PubMed ID: 36798611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal properties analysis and thermal cycling of HITEC molten salt with h-BN nanoparticles for CSP thermal energy storage applications.
    Suraparaju SK; Aljaerani HA; Samykano M; Kadirgama K; Noor MM; Natarajan SK
    Environ Sci Pollut Res Int; 2024 Aug; 31(38):50166-50178. PubMed ID: 38625473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement.
    Ma B; Shin D; Banerjee D
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.
    Lasfargues M; Stead G; Amjad M; Ding Y; Wen D
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles.
    Mondragón R; Juliá JE; Cabedo L; Navarrete N
    Sci Rep; 2018 May; 8(1):7532. PubMed ID: 29760478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage.
    Chieruzzi M; Miliozzi A; Crescenzi T; Torre L; Kenny JM
    Nanoscale Res Lett; 2015 Dec; 10(1):984. PubMed ID: 26123273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of a quaternary nitrate based molten salt heat transfer fluid for concentrated solar power plant.
    Kwasi-Effah CC; Egware HO; Obanor AI; Ighodaro OO
    Heliyon; 2023 May; 9(5):e16096. PubMed ID: 37215795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage.
    Chieruzzi M; Cerritelli GF; Miliozzi A; Kenny JM
    Nanoscale Res Lett; 2013 Oct; 8(1):448. PubMed ID: 24168168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increment of specific heat capacity of solar salt with SiO2 nanoparticles.
    Andreu-Cabedo P; Mondragon R; Hernandez L; Martinez-Cuenca R; Cabedo L; Julia JE
    Nanoscale Res Lett; 2014; 9(1):582. PubMed ID: 25346648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.
    Lai CC; Chang WC; Hu WL; Wang ZM; Lu MC; Chueh YL
    Nanoscale; 2014 May; 6(9):4555-9. PubMed ID: 24675904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Wide-Working-Temperature NaNO
    Wang H; Li J; Zhong Y; Liu X; Wang M
    Molecules; 2024 May; 29(10):. PubMed ID: 38792189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Synthesis of Alumina Nanoparticles in a Binary Carbonate Salt Eutectic for Enhancing Heat Capacity.
    Nayfeh Y; Rizvi SMM; El Far B; Shin D
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33120917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications.
    Lasfargues M; Bell A; Ding Y
    J Nanopart Res; 2016; 18():150. PubMed ID: 27358585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP.
    Wu Y; Li J; Wang M; Wang H; Zhong Y; Zhao Y; Wei M; Li Y
    RSC Adv; 2018 May; 8(34):19251-19260. PubMed ID: 35539666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures.
    D'Aguanno B; Karthik M; Grace AN; Floris A
    Sci Rep; 2018 Jul; 8(1):10485. PubMed ID: 29992980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermophysical properties via PAO superstructure.
    Pournorouz Z; Mostafavi A; Pinto A; Bokka A; Jeon J; Shin D
    Nanoscale Res Lett; 2017 Dec; 12(1):29. PubMed ID: 28078609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting Temperature Depression and Phase Transitions of Nitrate-Based Molten Salts in Nanoconfinement.
    Yazlak MG; Khan QA; Steinhart M; Duran H
    ACS Omega; 2022 Jul; 7(28):24669-24678. PubMed ID: 35874251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets.
    Xie Q; Zhu Q; Li Y
    Nanoscale Res Lett; 2016 Dec; 11(1):306. PubMed ID: 27325522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of tribochemical silica coating or multipurpose products on bonding performance of a CAD/CAM resin-based material.
    Wu X; Xie H; Meng H; Yang L; Chen B; Chen Y; Chen C
    J Mech Behav Biomed Mater; 2019 Feb; 90():417-425. PubMed ID: 30445368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling chloride salts for thermal energy storage: implications of salt purity.
    Kurley JM; Halstenberg PW; McAlister A; Raiman S; Dai S; Mayes RT
    RSC Adv; 2019 Aug; 9(44):25602-25608. PubMed ID: 35530081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.