These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36798841)

  • 1. Instrumental variable estimation of the marginal structural Cox model for time-varying treatments.
    Cui Y; Michael H; Tanser F; Tchetgen Tchetgen E
    Biometrika; 2023 Mar; 110(1):101-118. PubMed ID: 36798841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instrumental variable estimation of the causal hazard ratio.
    Wang L; Tchetgen Tchetgen E; Martinussen T; Vansteelandt S
    Biometrics; 2023 Jun; 79(2):539-550. PubMed ID: 36377509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of the marginal structural cox model for estimating individual and joined effects of treatments given in combination.
    Lusivika-Nzinga C; Selinger-Leneman H; Grabar S; Costagliola D; Carrat F
    BMC Med Res Methodol; 2017 Dec; 17(1):160. PubMed ID: 29202691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causal effect models for realistic individualized treatment and intention to treat rules.
    van der Laan MJ; Petersen ML
    Int J Biostat; 2007; 3(1):Article 3. PubMed ID: 19122793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SENSITIVITY ANALYSIS FOR UNMEASURED CONFOUNDING IN COARSE STRUCTURAL NESTED MEAN MODELS.
    Yang S; Lok JJ
    Stat Sin; 2018 Oct; 28(4):1703-1723. PubMed ID: 30853756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discussion on "Instrumental variable estimation of the causal hazard ratio" by Linbo Wang, Eric Tchetgen Tchetgen, Torben Martinussen, and Stijn Vansteelandt.
    O'Malley AJ; Martínez-Camblor P; MacKenzie TA
    Biometrics; 2023 Jun; 79(2):559-563. PubMed ID: 36427240
    [No Abstract]   [Full Text] [Related]  

  • 7. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies.
    Liu T; Hogan JW
    Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marginal Structural Models with Counterfactual Effect Modifiers.
    Zheng W; Luo Z; van der Laan MJ
    Int J Biostat; 2018 Jun; 14(1):. PubMed ID: 29883322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity.
    Cui Y; Tchetgen ET
    J Am Stat Assoc; 2021; 116(533):162-173. PubMed ID: 33994604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models.
    Petersen M; Schwab J; Gruber S; Blaser N; Schomaker M; van der Laan M
    J Causal Inference; 2014 Jun; 2(2):147-185. PubMed ID: 25909047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models.
    Keogh RH; Gran JM; Seaman SR; Davies G; Vansteelandt S
    Stat Med; 2023 Jun; 42(13):2191-2225. PubMed ID: 37086186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures.
    Brumback BA; Hernán MA; Haneuse SJ; Robins JM
    Stat Med; 2004 Mar; 23(5):749-67. PubMed ID: 14981673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IDENTIFICATION AND INFERENCE FOR MARGINAL AVERAGE TREATMENT EFFECT ON THE TREATED WITH AN INSTRUMENTAL VARIABLE.
    Liu L; Miao W; Sun B; Robins J; Tchetgen ET
    Stat Sin; 2020 Jul; 30(3):1517-1541. PubMed ID: 33209012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marginal Structural Cox Models with Case-Cohort Sampling.
    Lee H; Hudgens MG; Cai J; Cole SR
    Stat Sin; 2016 Apr; 26(2):509-526. PubMed ID: 27057128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function.
    Zheng W; Petersen M; van der Laan MJ
    Int J Biostat; 2016 May; 12(1):233-52. PubMed ID: 27227723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time dependent hazard ratio estimation using instrumental variables without conditioning on an omitted covariate.
    MacKenzie TA; Martinez-Camblor P; O'Malley AJ
    BMC Med Res Methodol; 2021 Mar; 21(1):56. PubMed ID: 33743583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does being physically active prevent future disability in older people? Attenuated effects when taking time-dependent confounders into account.
    Kreisel SH; Blahak C; Bäzner H; Hennerici MG
    BMC Geriatr; 2017 Dec; 17(1):290. PubMed ID: 29268707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating longitudinal data from marginal structural models using the additive hazard model.
    Keogh RH; Seaman SR; Gran JM; Vansteelandt S
    Biom J; 2021 Oct; 63(7):1526-1541. PubMed ID: 33983641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.