BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36799218)

  • 1. Systemic Hypoxemia Induces Cardiomyocyte Hypertrophy and Right Ventricular Specific Induction of Proliferation.
    Johnson J; Yang Y; Bian Z; Schena G; Li Y; Zhang X; Eaton DM; Gross P; Angheloiu A; Shaik A; Foster M; Berretta R; Kubo H; Mohsin S; Tian Y; Houser SR
    Circ Res; 2023 Mar; 132(6):723-740. PubMed ID: 36799218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interleukin-17 aggravates right ventricular remodeling via activating STAT3 under both normoxia and hypoxia.
    Huang J; Zhang W; Zhang CL; Wang L
    BMC Cardiovasc Disord; 2021 May; 21(1):249. PubMed ID: 34020615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Hypoxia-Inducible Factors in Regulating Right Ventricular Function and Remodeling during Chronic Hypoxia-induced Pulmonary Hypertension.
    Smith KA; Waypa GB; Dudley VJ; Budinger GRS; Abdala-Valencia H; Bartom E; Schumacker PT
    Am J Respir Cell Mol Biol; 2020 Nov; 63(5):652-664. PubMed ID: 32692928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection against pressure overload-induced right heart failure by uncoupling protein 2 silencing.
    Esfandiary A; Kutsche HS; Schreckenberg R; Weber M; Pak O; Kojonazarov B; Sydykov A; Hirschhäuser C; Wolf A; Haag D; Hecker M; Fink L; Seeger W; Ghofrani HA; Schermuly RT; Weißmann N; Schulz R; Rohrbach S; Li L; Sommer N; Schlüter KD
    Cardiovasc Res; 2019 Jun; 115(7):1217-1227. PubMed ID: 30850841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Down-regulation of the mitochondrial fusion protein Opa1/Mfn2 promotes cardiomyocyte hypertrophy in Su5416/hypoxia-induced pulmonary hypertension rats.
    Luo F; Fu M; Wang T; Qi Y; Zhong X; Li D; Liu B
    Arch Biochem Biophys; 2023 Oct; 747():109743. PubMed ID: 37696382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiomyocyte-specific overexpression of HEXIM1 prevents right ventricular hypertrophy in hypoxia-induced pulmonary hypertension in mice.
    Yoshikawa N; Shimizu N; Maruyama T; Sano M; Matsuhashi T; Fukuda K; Kataoka M; Satoh T; Ojima H; Sawai T; Morimoto C; Kuribara A; Hosono O; Tanaka H
    PLoS One; 2012; 7(12):e52522. PubMed ID: 23300697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Right ventricular remodeling in response to volume overload in fetal sheep.
    Karamlou T; Giraud GD; McKeogh D; Jonker SS; Shen I; Ungerleider RM; Thornburg KL
    Am J Physiol Heart Circ Physiol; 2019 May; 316(5):H985-H991. PubMed ID: 30707615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice.
    Frentzou GA; Drinkhill MJ; Turner NA; Ball SG; Ainscough JF
    Dis Model Mech; 2015 Aug; 8(8):783-94. PubMed ID: 26092119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAP kinase kinase kinase-2 (MEKK2) regulates hypertrophic remodeling of the right ventricle in hypoxia-induced pulmonary hypertension.
    Brown RD; Ambler SK; Li M; Sullivan TM; Henry LN; Crossno JT; Long CS; Garrington TP; Stenmark KR
    Am J Physiol Heart Circ Physiol; 2013 Jan; 304(2):H269-81. PubMed ID: 23125215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-Induced Mitogenic Factor Promotes Cardiac Hypertrophy via Calcium-Dependent and Hypoxia-Inducible Factor-1α Mechanisms.
    Kumar S; Wang G; Liu W; Ding W; Dong M; Zheng N; Ye H; Liu J
    Hypertension; 2018 Aug; 72(2):331-342. PubMed ID: 29891648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steroid receptor coactivator-2 (SRC-2) coordinates cardiomyocyte paracrine signaling to promote pressure overload-induced angiogenesis.
    Suh JH; Lai L; Nam D; Kim J; Jo J; Taffet GE; Kim E; Kaelber JT; Lee HK; Entman ML; Cooke JP; Reineke EL
    J Biol Chem; 2017 Dec; 292(52):21643-21652. PubMed ID: 29127200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene-environment regulation of chamber-specific maturation during hypoxemic perinatal circulatory transition.
    Zhao Y; Kang X; Barsegian A; He J; Guzman A; Lau RP; Biniwale R; Wadhra M; Reemtsen B; Garg M; Halnon N; Quintero-Rivera F; Grody WW; ; Van Arsdell G; Nelson SF; Touma M
    J Mol Med (Berl); 2020 Jul; 98(7):1009-1020. PubMed ID: 32533200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic ablation of interleukin-18 does not attenuate hypobaric hypoxia-induced right ventricular hypertrophy.
    Bruns DR; Buttrick PM; Walker LA
    Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(6):L542-50. PubMed ID: 26747780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dedifferentiation, Proliferation, and Redifferentiation of Adult Mammalian Cardiomyocytes After Ischemic Injury.
    Wang WE; Li L; Xia X; Fu W; Liao Q; Lan C; Yang D; Chen H; Yue R; Zeng C; Zhou L; Zhou B; Duan DD; Chen X; Houser SR; Zeng C
    Circulation; 2017 Aug; 136(9):834-848. PubMed ID: 28642276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuregulin-1 enhances cell-cycle activity, delays cardiac fibrosis, and improves cardiac performance in rat pups with right ventricular pressure load.
    Bossers GPL; Günthel M; van der Feen DE; Hagdorn QAJ; Koop AC; van Duijvenboden K; Barnett P; Borgdorff MAJ; Christoffels VM; Silljé HHW; Berger RMF; Bartelds B
    J Thorac Cardiovasc Surg; 2022 Dec; 164(6):e493-e510. PubMed ID: 34922752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction.
    Janssens S; Pokreisz P; Schoonjans L; Pellens M; Vermeersch P; Tjwa M; Jans P; Scherrer-Crosbie M; Picard MH; Szelid Z; Gillijns H; Van de Werf F; Collen D; Bloch KD
    Circ Res; 2004 May; 94(9):1256-62. PubMed ID: 15044322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac resident macrophages are involved in hypoxia‑induced postnatal cardiomyocyte proliferation.
    Liu B; Zhang HG; Zhu Y; Jiang YH; Luo GP; Tang FQ; Jian Z; Xiao YB
    Mol Med Rep; 2017 Jun; 15(6):3541-3548. PubMed ID: 28393210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Celastrol as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension and Right Ventricular Failure Through Suppression of Bsg (Basigin)/CyPA (Cyclophilin A).
    Kurosawa R; Satoh K; Nakata T; Shindo T; Kikuchi N; Satoh T; Siddique MAH; Omura J; Sunamura S; Nogi M; Takeuchi Y; Miyata S; Shimokawa H
    Arterioscler Thromb Vasc Biol; 2021 Mar; 41(3):1205-1217. PubMed ID: 33472404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction.
    Xu X; Zhang P; Kwak D; Fassett J; Yue W; Atzler D; Hu X; Liu X; Wang H; Lu Z; Guo H; Schwedhelm E; Böger RH; Chen P; Chen Y
    Basic Res Cardiol; 2017 Aug; 112(5):55. PubMed ID: 28819685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Left ventricular dysfunction and associated cellular injury in rats exposed to chronic intermittent hypoxia.
    Chen L; Zhang J; Gan TX; Chen-Izu Y; Hasday JD; Karmazyn M; Balke CW; Scharf SM
    J Appl Physiol (1985); 2008 Jan; 104(1):218-23. PubMed ID: 18006871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.