These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A Dual-Channel Deep Learning Approach for Lung Cavity Estimation From Hyperpolarized Gas and Proton MRI. Astley JR; Biancardi AM; Marshall H; Hughes PJC; Collier GJ; Smith LJ; Eaden JA; Hughes R; Wild JM; Tahir BA J Magn Reson Imaging; 2023 Jun; 57(6):1878-1890. PubMed ID: 36373828 [TBL] [Abstract][Full Text] [Related]
3. Segmentation of the Aorta and Pulmonary Arteries Based on 4D Flow MRI in the Pediatric Setting Using Fully Automated Multi-Site, Multi-Vendor, and Multi-Label Dense U-Net. Fujiwara T; Berhane H; Scott MB; Englund EK; Schäfer M; Fonseca B; Berthusen A; Robinson JD; Rigsby CK; Browne LP; Markl M; Barker AJ J Magn Reson Imaging; 2022 Jun; 55(6):1666-1680. PubMed ID: 34792835 [TBL] [Abstract][Full Text] [Related]
4. Large-scale investigation of deep learning approaches for ventilated lung segmentation using multi-nuclear hyperpolarized gas MRI. Astley JR; Biancardi AM; Hughes PJC; Marshall H; Smith LJ; Collier GJ; Eaden JA; Weatherley ND; Hatton MQ; Wild JM; Tahir BA Sci Rep; 2022 Jun; 12(1):10566. PubMed ID: 35732795 [TBL] [Abstract][Full Text] [Related]
5. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets. Fashandi H; Kuling G; Lu Y; Wu H; Martel AL Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062 [TBL] [Abstract][Full Text] [Related]
6. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
7. Deep convolutional neural networks with multiplane consensus labeling for lung function quantification using UTE proton MRI. Zha W; Fain SB; Schiebler ML; Evans MD; Nagle SK; Liu F J Magn Reson Imaging; 2019 Oct; 50(4):1169-1181. PubMed ID: 30945385 [TBL] [Abstract][Full Text] [Related]
8. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach. Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622 [TBL] [Abstract][Full Text] [Related]
9. Automatic Time-Resolved Cardiovascular Segmentation of 4D Flow MRI Using Deep Learning. Bustamante M; Viola F; Engvall J; Carlhäll CJ; Ebbers T J Magn Reson Imaging; 2023 Jan; 57(1):191-203. PubMed ID: 35506525 [TBL] [Abstract][Full Text] [Related]
10. The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches. Hostin MA; Ogier AC; Michel CP; Le Fur Y; Guye M; Attarian S; Fortanier E; Bellemare ME; Bendahan D J Magn Reson Imaging; 2023 Dec; 58(6):1826-1835. PubMed ID: 37025028 [TBL] [Abstract][Full Text] [Related]
11. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation. Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527 [TBL] [Abstract][Full Text] [Related]
12. Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI. Rahimpour M; Saint Martin MJ; Frouin F; Akl P; Orlhac F; Koole M; Malhaire C Eur Radiol; 2023 Feb; 33(2):959-969. PubMed ID: 36074262 [TBL] [Abstract][Full Text] [Related]
13. Deep learning-based segmentation of the lung in MR-images acquired by a stack-of-spirals trajectory at ultra-short echo-times. Weng AM; Heidenreich JF; Metz C; Veldhoen S; Bley TA; Wech T BMC Med Imaging; 2021 May; 21(1):79. PubMed ID: 33964892 [TBL] [Abstract][Full Text] [Related]
14. Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning. Kang H; Witanto JN; Pratama K; Lee D; Choi KS; Choi SH; Kim KM; Kim MS; Kim JW; Kim YH; Park SJ; Park CK J Magn Reson Imaging; 2023 Mar; 57(3):871-881. PubMed ID: 35775971 [TBL] [Abstract][Full Text] [Related]
15. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks. Said D; Carbonell G; Stocker D; Hectors S; Vietti-Violi N; Bane O; Chin X; Schwartz M; Tabrizian P; Lewis S; Greenspan H; Jégou S; Schiratti JB; Jehanno P; Taouli B Eur Radiol; 2023 Sep; 33(9):6020-6032. PubMed ID: 37071167 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based ultrasound auto-segmentation of the prostate with brachytherapy implanted needles. Hampole P; Harding T; Gillies D; Orlando N; Edirisinghe C; Mendez LC; D'Souza D; Velker V; Correa R; Helou J; Xing S; Fenster A; Hoover DA Med Phys; 2024 Apr; 51(4):2665-2677. PubMed ID: 37888789 [TBL] [Abstract][Full Text] [Related]
17. MRI Deep Learning-Based Automatic Segmentation of Interventricular Septum for Black-Blood Myocardial T2* Measurement in Thalassemia. Lian Z; Lu Q; Lin B; Chen L; Peng P; Feng Y J Magn Reson Imaging; 2024 Aug; 60(2):651-661. PubMed ID: 37941460 [TBL] [Abstract][Full Text] [Related]
18. A hybrid model- and deep learning-based framework for functional lung image synthesis from multi-inflation CT and hyperpolarized gas MRI. Astley JR; Biancardi AM; Marshall H; Hughes PJC; Collier GJ; Hatton MQ; Wild JM; Tahir BA Med Phys; 2023 Sep; 50(9):5657-5670. PubMed ID: 36932692 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Spatial Attentive Deep Learning for Automatic Placental Segmentation on Longitudinal MRI. Liu Y; Zabihollahy F; Yan R; Lee B; Janzen C; Devaskar SU; Sung K J Magn Reson Imaging; 2023 May; 57(5):1533-1540. PubMed ID: 37021577 [TBL] [Abstract][Full Text] [Related]
20. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]