These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36799452)

  • 1. Catalyst Aggregation Matters for Immobilized Molecular CO
    Ren S; Lees EW; Hunt C; Jewlal A; Kim Y; Zhang Z; Mowbray BAW; Fink AG; Melo L; Grant ER; Berlinguette CP
    J Am Chem Soc; 2023 Mar; 145(8):4414-4420. PubMed ID: 36799452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO
    Soucy TL; Dean WS; Zhou J; Rivera Cruz KE; McCrory CCL
    Acc Chem Res; 2022 Feb; 55(3):252-261. PubMed ID: 35044745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular electrocatalysts can mediate fast, selective CO
    Ren S; Joulié D; Salvatore D; Torbensen K; Wang M; Robert M; Berlinguette CP
    Science; 2019 Jul; 365(6451):367-369. PubMed ID: 31346062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic Defect-Rich Graphene Coupled Cobalt Phthalocyanine for Robust Electrochemical Reduction of Carbon Dioxide.
    Liang F; Zhang J; Hu Z; Ma C; Ni W; Zhang Y; Zhang S
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25523-25532. PubMed ID: 34009943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translating Catalyst-Polymer Composites from Liquid to Gas-Fed CO
    Yao L; Yin C; Rivera-Cruz KE; McCrory CCL; Singh N
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31438-31448. PubMed ID: 37348071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalysts Derived from Copper Complexes Transform CO into C
    Ren S; Zhang Z; Lees EW; Fink AG; Melo L; Hunt C; Dvorak DJ; Yu Wu W; Grant ER; Berlinguette CP
    Chemistry; 2022 May; 28(25):e202200340. PubMed ID: 35344228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure Design Strategy for Molecularly Dispersed Cobalt Phthalocyanine and Efficient Mass Transport in CO
    Yue P; Zhong L; Deng Y; Li J; Zhang L; Ye D; Zhu X; Fu Q; Liao Q
    Small; 2023 Jun; 19(24):e2300051. PubMed ID: 36896999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of Highly Reactive Cobalt Phthalocyanine via Electrochemical Activation for Enhanced CO
    Wu X; Zhao JY; Sun JW; Li WJ; Yuan HY; Liu PF; Dai S; Yang HG
    Small; 2023 Jun; 19(23):e2207037. PubMed ID: 36879480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored Local Electronic Environment of Co-N
    Huang M; Chen B; Zhang H; Jin Y; Zhi Q; Yang T; Wang K; Jiang J
    Small Methods; 2024 Apr; ():e2301652. PubMed ID: 38659342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing effect of cobalt phthalocyanine dispersion on electrocatalytic reduction of CO
    Guo T; Wang X; Xing X; Fu Z; Ma C; Bedane AH; Kong L
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):122755-122773. PubMed ID: 37978121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphdiyne/Graphene Heterostructure: A Universal 2D Scaffold Anchoring Monodispersed Transition-Metal Phthalocyanines for Selective and Durable CO
    Gu H; Zhong L; Shi G; Li J; Yu K; Li J; Zhang S; Zhu C; Chen S; Yang C; Kong Y; Chen C; Li S; Zhang J; Zhang L
    J Am Chem Soc; 2021 Jun; 143(23):8679-8688. PubMed ID: 34077183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addressing the Carbonate Issue: Electrocatalysts for Acidic CO
    Wu W; Xu L; Lu Q; Sun J; Xu Z; Song C; Yu JC; Wang Y
    Adv Mater; 2024 May; ():e2312894. PubMed ID: 38722084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Mass Transport in Electrochemical CO
    Chan T; Kong CJ; King AJ; Babbe F; Prabhakar RR; Kubiak CP; Ager JW
    ACS Appl Energy Mater; 2024 Apr; 7(8):3091-3098. PubMed ID: 38665895
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Cheon S; Li J; Wang H
    J Am Chem Soc; 2024 Jun; 146(23):16348-16354. PubMed ID: 38806413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the factors governing the water oxidation reaction pathway of mononuclear and binuclear cobalt phthalocyanine catalysts.
    Huang Q; Chen J; Luan P; Ding C; Li C
    Chem Sci; 2022 Aug; 13(30):8797-8803. PubMed ID: 35975146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer coordination promotes selective CO
    Kramer WW; McCrory CCL
    Chem Sci; 2016 Apr; 7(4):2506-2515. PubMed ID: 28660020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphiphilic Cobalt Phthalocyanine Boosts Carbon Dioxide Reduction.
    Zhou S; Zhang LJ; Zhu L; Tung CH; Wu LZ
    Adv Mater; 2023 Oct; 35(41):e2300923. PubMed ID: 37503663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Reconstruction of Bi 2 Te 4 O 11  Nanorods for Efficient and pH-universal Electrochemical CO 2  Reduction.
    Chen J; Mao T; Wang J; Wang J; Jin H; Wang S
    Angew Chem Int Ed Engl; 2024 Jul; ():e202408849. PubMed ID: 38993071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking heterogeneous structural motifs and the redox behaviour of copper-zinc nanocatalysts for the electrocatalytic CO
    Rüscher M; Herzog A; Timoshenko J; Jeon HS; Frandsen W; Kühl S; Roldan Cuenya B
    Catal Sci Technol; 2022 May; 12(9):3028-3043. PubMed ID: 35662799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.