BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36799474)

  • 21. TRIM59 knockdown blocks cisplatin resistance in A549/DDP cells through regulating PTEN/AKT/HK2.
    He R; Liu H
    Gene; 2020 Jul; 747():144553. PubMed ID: 32165307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and characterisation of the RBCC728/TRIM36 zinc-binding protein from the tumor suppressor gene region at chromosome 5q22.3.
    Balint I; Müller A; Nagy A; Kovacs G
    Gene; 2004 May; 332():45-50. PubMed ID: 15145053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reciprocal deregulation of NKX3.1 and AURKA axis in castration-resistant prostate cancer and NEPC models.
    Sooreshjani MA; Kamra M; Zoubeidi A; Shah K
    J Biomed Sci; 2021 Oct; 28(1):68. PubMed ID: 34625072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting Protein Arginine Methyltransferase 5 Suppresses Radiation-induced Neuroendocrine Differentiation and Sensitizes Prostate Cancer Cells to Radiation.
    Owens JL; Beketova E; Liu S; Shen Q; Pawar JS; Asberry AM; Yang J; Deng X; Elzey BD; Ratliff TL; Cheng L; Choo R; Citrin DE; Polascik TJ; Wang B; Huang J; Li C; Wan J; Hu CD
    Mol Cancer Ther; 2022 Mar; 21(3):448-459. PubMed ID: 35027481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PLOD2 promotes aerobic glycolysis and cell progression in colorectal cancer by upregulating HK2.
    Du W; Liu N; Zhang Y; Liu X; Yang Y; Chen W; He Y
    Biochem Cell Biol; 2020 Jun; 98(3):386-395. PubMed ID: 31742425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth.
    Wang L; Xiong H; Wu F; Zhang Y; Wang J; Zhao L; Guo X; Chang LJ; Zhang Y; You MJ; Koochekpour S; Saleem M; Huang H; Lu J; Deng Y
    Cell Rep; 2014 Sep; 8(5):1461-74. PubMed ID: 25176644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stanniocalcin1 knockdown induces ferroptosis and suppresses glycolysis in prostate cancer via the Nrf2 pathway.
    Dai YQ; Bai Y; Gu J; Fan BY
    Neoplasma; 2022 Dec; 69(6):1396-1405. PubMed ID: 36591803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SNAI2/Slug gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression.
    Esposito S; Russo MV; Airoldi I; Tupone MG; Sorrentino C; Barbarito G; Di Meo S; Di Carlo E
    Oncotarget; 2015 Jul; 6(19):17121-34. PubMed ID: 25686823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MiR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2.
    Hui L; Zhang J; Guo X
    Biomed Pharmacother; 2018 Jul; 103():1194-1201. PubMed ID: 29864898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secretogranin II is overexpressed in advanced prostate cancer and promotes the neuroendocrine differentiation of prostate cancer cells.
    Courel M; El Yamani FZ; Alexandre D; El Fatemi H; Delestre C; Montero-Hadjadje M; Tazi F; Amarti A; Magoul R; Chartrel N; Anouar Y
    Eur J Cancer; 2014 Nov; 50(17):3039-49. PubMed ID: 25307750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycolysis inhibition and apoptosis induction in human prostate cancer cells by FV-429-mediated regulation of AR-AKT-HK2 signaling network.
    Chen X; Wei L; Yang L; Guo W; Guo Q; Zhou Y
    Food Chem Toxicol; 2020 Sep; 143():111517. PubMed ID: 32619556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploiting the Metabolic Consequences of PTEN Loss and Akt/Hexokinase 2 Hyperactivation in Prostate Cancer: A New Role for δ-Tocotrienol.
    Fontana F; Anselmi M; Limonta P
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of MicroRNAs in Neuroendocrine Prostate Cancer.
    Sreekumar A; Saini S
    Noncoding RNA; 2022 Mar; 8(2):. PubMed ID: 35447888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monoamine oxidase A drives neuroendocrine differentiation in prostate cancer.
    Shui X; Ren X; Xu R; Xie Q; Hu Y; Qin J; Meng H; Zhang C; Zhao J; Shi C
    Biochem Biophys Res Commun; 2022 May; 606():135-141. PubMed ID: 35349822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer.
    Singh N; Ramnarine VR; Song JH; Pandey R; Padi SKR; Nouri M; Olive V; Kobelev M; Okumura K; McCarthy D; Hanna MM; Mukherjee P; Sun B; Lee BR; Parker JB; Chakravarti D; Warfel NA; Zhou M; Bearss JJ; Gibb EA; Alshalalfa M; Karnes RJ; Small EJ; Aggarwal R; Feng F; Wang Y; Buttyan R; Zoubeidi A; Rubin M; Gleave M; Slack FJ; Davicioni E; Beltran H; Collins C; Kraft AS
    Nat Commun; 2021 Dec; 12(1):7349. PubMed ID: 34934057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hexokinase 2: The preferential target of trehalose-6-phosphate over hexokinase 1.
    Magalhães RSS; Boechat FC; Brasil AA; Neto JRM; Ribeiro GD; Paranhos LH; Neves de Souza N; Vieira T; Outeiro TF; Neves BC; Eleutherio ECA
    J Cell Biochem; 2022 Nov; 123(11):1808-1816. PubMed ID: 35944097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling.
    Lin TP; Chang YT; Lee SY; Campbell M; Wang TC; Shen SH; Chung HJ; Chang YH; Chiu AW; Pan CC; Lin CH; Chu CY; Kung HJ; Cheng CY; Chang PC
    Oncotarget; 2016 May; 7(18):26137-51. PubMed ID: 27034167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate
    Zhou H; He Q; Li C; Alsharafi BLM; Deng L; Long Z; Gan Y
    Front Cell Dev Biol; 2022; 10():955669. PubMed ID: 35938167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular Polysaccharide from
    Yan H; Ma X; Mi Z; He Z; Rong P
    J Clin Transl Hepatol; 2022 Aug; 10(4):608-619. PubMed ID: 36062277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A non-metabolic function of hexokinase 2 in small cell lung cancer: promotes cancer cell stemness by increasing USP11-mediated CD133 stability.
    Wang J; Shao F; Yang Y; Wang W; Yang X; Li R; Cheng H; Sun S; Feng X; Gao Y; He J; Lu Z
    Cancer Commun (Lond); 2022 Oct; 42(10):1008-1027. PubMed ID: 35975322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.