BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 36799478)

  • 1. On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart.
    Kadir AA; Stubbs BJ; Chong CR; Lee H; Cole M; Carr C; Hauton D; McCullagh J; Evans RD; Clarke K
    J Physiol; 2023 Apr; 601(7):1207-1224. PubMed ID: 36799478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empagliflozin improves cardiac energetics during ischaemia/reperfusion by directly increasing cardiac ketone utilization.
    Chase D; Eykyn TR; Shattock MJ; Chung YJ
    Cardiovasc Res; 2023 Dec; 119(16):2672-2680. PubMed ID: 37819017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate signaling by insulin: a ketone bodies ratio mimics insulin action in heart.
    Kashiwaya Y; King MT; Veech RL
    Am J Cardiol; 1997 Aug; 80(3A):50A-64A. PubMed ID: 9293956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of increased mechanical work by isolated perfused rat heart during production or uptake of ketone bodies. Assessment of mitochondrial oxidized to reduced free nicotinamide-adenine dinucleotide ratios and oxaloacetate concentrations.
    Opie LH; Owen P
    Biochem J; 1975 Jun; 148(3):403-15. PubMed ID: 173281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase.
    Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1976 Aug; 440(2):377-90. PubMed ID: 182244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
    Ho KL; Zhang L; Wagg C; Al Batran R; Gopal K; Levasseur J; Leone T; Dyck JRB; Ussher JR; Muoio DM; Kelly DP; Lopaschuk GD
    Cardiovasc Res; 2019 Sep; 115(11):1606-1616. PubMed ID: 30778524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvate dehydrogenase influences postischemic heart function.
    Lewandowski ED; White LT
    Circulation; 1995 Apr; 91(7):2071-9. PubMed ID: 7895366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor.
    Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR
    Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts.
    Saddik M; Lopaschuk GD
    J Biol Chem; 1991 May; 266(13):8162-70. PubMed ID: 1902472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart.
    Schönekess BO; Brindley PG; Lopaschuk GD
    Can J Physiol Pharmacol; 1995 Nov; 73(11):1632-40. PubMed ID: 8789418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of vanadate on glycolysis, intracellular sodium, and pH in perfused rat hearts.
    Geraldes CF; Castro MM; Sherry AD; Ramasamy R
    Mol Cell Biochem; 1997 May; 170(1-2):53-63. PubMed ID: 9144318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of orotic acid treatment on the energy and carbohydrate metabolism of the hypertrophying rat heart.
    Donohoe JA; Rosenfeldt FL; Munsch CM; Williams JF
    Int J Biochem; 1993 Feb; 25(2):163-82. PubMed ID: 8444313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose requirement for postischemic recovery of perfused working heart.
    Mallet RT; Hartman DA; Bünger R
    Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats.
    Opie LH; Mansford KR; Owen P
    Biochem J; 1971 Sep; 124(3):475-90. PubMed ID: 5135234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of glycogen to aerobic myocardial glucose utilization.
    Henning SL; Wambolt RB; Schönekess BO; Lopaschuk GD; Allard MF
    Circulation; 1996 Apr; 93(8):1549-55. PubMed ID: 8608624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart.
    Schönekess BO; Allard MF; Henning SL; Wambolt RB; Lopaschuk GD
    Circ Res; 1997 Oct; 81(4):540-9. PubMed ID: 9314835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of TA-3090, a new calcium channel blocker, on myocardial substrate utilization in ischemic and nonischemic isolated working fatty acid-perfused rat hearts.
    Davies NJ; McVeigh JJ; Lopaschuk GD
    Circ Res; 1991 Mar; 68(3):807-17. PubMed ID: 1742868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.
    Russell RR; Taegtmeyer H
    J Clin Invest; 1991 Feb; 87(2):384-90. PubMed ID: 1671390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-alpha-lipoic acid.
    Obrosova I; Cao X; Greene DA; Stevens MJ
    Diabetologia; 1998 Dec; 41(12):1442-50. PubMed ID: 9867211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.